Mathematik 2 für Regenerative Energien

Klausur vom 2. Oktober 2015

Jörn Loviscach

Versionsstand: 1. Oktober 2015, 13:24

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Germany License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Drei Punkte pro Aufgabe. Mindestpunktzahl zum Bestehen: 15 Punkte. Hilfsmittel: maximal acht einseitig oder vier beidseitig beschriftete DIN-A4-Spickzettel beliebigen Inhalts, möglichst selbst verfasst oder zusammengestellt; kein Skript, keine andere Formelsammlung, kein Taschenrechner, kein Computer (auch nicht wearable), kein Handy.

Name	Vorname	Matrikelnummer	E-Mail-Adresse

Fingerübungen

- 1. Im \mathbb{R}^3 ist die Ebene durch die Punkte (1|1|1), (4|3|2) und (1|2|3) gegeben. Enthält diese Ebene den Ursprung? Rechenweg!
- 2. Bestimmen Sie alle Eigenwerte der Matrix $\begin{pmatrix} 2 & 3 & 0 \\ 0 & 2 & 3 \\ 0 & 1 & 2 \end{pmatrix}$.
- 3. Finden Sie die Lösung der Differentialgleichung $(x+1)y' \stackrel{!}{=} y$ zur Anfangsbedingung $y(3) \stackrel{!}{=} 2$.
- 4. Bestimmen Sie die allgemeine Lösung der Differentialgleichung $y'' y' \stackrel{!}{=} x$.
- 5. Lösen Sie die Differentialgleichung $\dot{y}(t) 2y(t) \stackrel{!}{=} e^{-3t}$ zur Anfangsbedingung $y(0) \stackrel{!}{=} 5$ mit Hilfe der Laplace-Transformation. Rechenweg!
- 6. Hat die Funktion $f(x, y) := x^2y^3 8x^2 y^3 + 8$ an der Stelle (1|2) ein lokales Minimum oder ein lokales Maximum oder kein lokales Extremum? Begründen Sie Ihre Antwort mit den ersten und zweiten Ableitungen.

1

Kreative Anwendung

- 7. Im \mathbb{R}^3 ist die Kugel mit dem Radius 3 um den Ursprung gegeben. Geben Sie die Gleichung einer Tangentengerade an diese Kugel an, die durch den Punkt (1|2|3) läuft (keine eindeutige Lösung).
- 8. Der \mathbb{R}^2 wird an der Diagonalen y = x gespiegelt und dann um $+45^\circ$ um den Ursprung gedreht. Geben Sie die Matrix an, mit der man diese Abbildung so schreiben kann: neuer Ortsvektor = Matrix mal alter Ortsvektor.
- 9. Geben Sie eine Matrix an, deren Kern gleich der folgenden Ebene ist (keine eindeutige Lösung):

$$\lambda \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$

- 10. Finden Sie näherungsweise eine Lösung der Gleichung $\ln(x) = \frac{9}{8}$, indem Sie $\ln(x)$ an der Stelle x = e quadratisch nähern.
- 11. Bestimmen Sie die Fourier-Koeffizienten c_0 und c_3 für die Funktion f, welche die Periode 2 hat, für $t \in [-1;0)$ gleich 0 ist und für $t \in [0;1)$ gleich $\sin(\pi t)$ ist. Schreiben Sie $\sin(\cdots)$ dazu mit $e^{i\cdots}$.
- 12. Gehen alle Lösungen der Differentialgleichung $y'' + 4y' + 13y \stackrel{!}{=} 0$ für $x \to \infty$ gegen null? Begründung!