
Audio Engineering Society 

Convention Paper 
Presented at the 126th Convention 
2009 May 7–10 Munich, Germany 

The papers at this Convention have been selected on the basis of a submitted abstract and extended precis that have been peer 
reviewed by at least two qualified anonymous reviewers. This convention paper has been reproduced from the author's advance 
manuscript, without editing, corrections, or consideration by the Review Board. The AES takes no responsibility for the contents. 
Additional papers may be obtained by sending request and remittance to Audio Engineering Society, 60 East 42nd Street, New 
York, New York 10165-2520, USA; also see www.aes.org. All rights reserved. Reproduction of this paper, or any portion thereof, 
is not permitted without direct permission from the Journal of the Audio Engineering Society. 

 Automatic Adjustment 
of Off-the-Shelf Reverberation Effects 

Sebastian Heise1, Michael Hlatky1, and Jörn Loviscach2 

1 Hochschule Bremen (University of Applied Sciences), 28133 Bremen, Germany 
Sebastian@h3e.eu, mhlatky@acm.org 

2 Fachhochschule Bielefeld (University of Applied Sciences), 33602 Bielefeld, Germany 
jl@j3l7h.de 

ABSTRACT 

Virtually all effect units that process digital audio—software plug-ins as well as dedicated hardware—can be con-
trolled digitally. This allows subjecting their settings to optimization processes. We demonstrate the automatic adap-
tation of reverberation plug-ins to given room impulse responses. This facilitates replacing computationally expen-
sive convolution reverberation units with standard ones, which also are amenable to easier parameter tweaking after 
their overall setting has been adjusted through our method. We propose optimization strategies for this multi-
dimensional non-linear problem that need no adaptation to the particularities of each effect unit, are sped up using 
multi-core processors and networked computers. The optimization process evaluates the difference between the ac-
tual response and the targeted response on the basis of psychoacoustic features. An acoustic comparison with effect 
parameter settings crafted by professional human operators indicates that the computationally optimized settings 
yield comparable or better results. 

 

1.  INTRODUCTION 

The automatic adjustment of audio effect units is a dif-
ficult task due to product-specific algorithms. The con-
trols offered often do not stick to a standard selection of 
parameters. And even when they do, the actual meaning 
of numeric settings of parameters such as “Reverbera-

tion Density” varies from unit to unit. To make auto-
matic adjustments, one could try to learn the specific 
details of any unit at hand—a gargantuan task. We pro-
pose instead to analyze the effect of the unit on the au-
dio signal and apply optimization routines that treat the 
unit as a black box. 

The particular application considered in this paper con-
cerns artificial reverberation. This bears practical rele-
vance: Convolution reverberation units, which are based 
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on measured impulse responses, are known to reproduce 
the acoustics of a room with great fidelity. However, 
they often incur a huge computational load, are not easy 
to tweak, and may produce a sterile, static sound if the 
impulse response is kept strictly constant. The question 
arises what the best setting of a standard, filter-and-
delay-type reverberation unit is to simulate a given 
room impulse response. 

 

Fig. 1: The optimizer application adjusts the parameters 
of VST-based audio effects through comparing their 
impulse responses to a user-defined reference using a 
simplified psychoacoustic model. 

Our prototype is based on the VST application-
programming interface for audio effect plug-ins. The 
program aims at optimizing the settings of reverberation 
plug-ins to mimic a given room impulse response, see 
Fig. 1. The software can handle a virtually unlimited 
number of different plug-ins in parallel, finding an op-
timal one for the given task. In our tests, we used more 
than a dozen commercial or freely available reverbera-
tion plug-ins. The automated comparison employs the 
Euclidean distance of vectors of Mel-Frequency Cep-
stral Coefficients (MFCCs) [1]. 

We have implemented and studied four optimization 
strategies: 

• Evolutionary [2]: A population of genotypes 
each of which represents the complete setting 

of a plug-in is subjected to mutation, crossover, 
and selection. This approach is easily paral-
lelizable. 

• Nelder-Mead [3]: The Nelder-Mead approach 
tries to fit a simplex body into the problem 
space by moving it or shrinking its size. This 
method is inherently non-parallel, does not deal 
well with discontinuities, and is easily trapped 
in local minima. 

• Nelder-Mead with brute-force parallelization: 
All steps of the standard Nelder-Mead opti-
mizer are computed in parallel, which leaves 
some of the computational results unused. Al-
though this speeds up the computational time, 
the remaining restrictions of the non-parallel 
implementation still apply. 

• Particle Swarm Optimization [4]: In this opti-
mization strategy we used artificial swarm in-
telligence to find an optimal solution. This ap-
proach is also easily parallelizable. 

The best performing plug-ins that we have tested lead to 
a clear progress after 25 to 50 fitness calculations in the 
optimization. However, depending on the difference of 
the plug-in’s initial settings to the intended result, some-
times 100 steps are required to achieve acoustic similar-
ity. One step requires about a quarter second on a single 
processor core. The largest part of this time is consumed 
by the computation of the spectral envelopes. 

2. RELATED WORK 

Being a linear and (theoretically) time-invariant phe-
nomenon, the effect of reverberation on a signal is rela-
tively easy to analyze, as opposed to the effect of, say, a 
dynamics compressor. This, too, makes reverberation a 
good starting point for automated optimization. The 
simpler task of automatic adjustment of equalizers with 
genetic algorithms has already been addressed in a mul-
titude of research papers [5][6][7][8]. 

In previous work [9], one of us already used a genetic 
algorithm to find equalizer settings so that the magni-
tude response curve matches anchor points defined by 
the user. Since the genetic string used in that work is 
relatively short and comparing the curve to the settings 
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could be implemented effectively, it was possible to 
find proper settings nearly in real time. 

In further previous work [10], one of us already dug into 
VST setup libraries and searched for statistical coher-
ence. In this work we concentrated on automated setup 
of synthesizer effects, where usually a lot of parameters 
show coherence in their settings. Applied to VST rever-
beration effects, one could search for a relation between 
different parameters, say, decay and level, and simplify 
the interface in combining these parameters in one 
knob. 

Extra et al [11] compared different reverberation 
devices in a listening test to judge their perceived sound 
quality. They also compiled a set of analysis tools that 
help compare and describe aspects and phenomena of 
reverberation. The result of their test was that none of 
the proposed objective analysis tools could be used to 
replace a listening test in judging the reverberation 
sound quality. 

3. IMPLEMENTATION 

The optimization software applies its specific search 
strategy to analyze the effect of the plug-in’s settings 
through measuring the first seven seconds of its impulse 
response. Since there is no real-time audio output neces-
sary, the plug-ins can compute this signal in a fraction 
of the actual playback duration. The development of the 
prototype had to address three major issues: how to 
compare different reverberation settings, how to distrib-
ute the workload onto several processor cores and/or 
several computers, and how to conduct the optimization. 

3.1. Comparing Reverberation 

The basis of all optimization strategies is formed by a 
distance function that estimates the similarity of a sound 
sample to a reference. Such a comparison cannot be 
undertaken on a sample-per-sample basis: What counts 
is the perceived similarity of the sound. In the applica-
tion at hand we capitalize on the fact that most of the 
interesting impulse responses sound noisy. Only in ex-
treme cases such as a small room with hard walls we 
will get harmonic structures through clearly isolated 
reflections. Noisy audio snippets can properly be de-
scribed by MFCCs, which ignore the fine structure of 
the frequency spectrum. To capture the temporal devel-

opment of the impulse response into account we extract 
the MFCC vectors over time (26 MFCCs, sampling fre-
quency: 44,100 Hz, frame size: 2048 samples, overlap: 
50%). 

 
Fig. 2: 10,000 random settings of the Ambience1 VST 
reverb’s parameters “Room Size” and “Decay Time” 
versus the computed fitness against a given room im-
pulse response. The fitness scale is arbitrary derived 
from the Euclidean distance between the MFCC vectors 
and therefore displayed without scale. 

 
Fig. 3: 10,000 random settings of the Ambience plug-
in’s parameters “Variation” and “Diffusion” versus the 
computed fitness against a given room impulse re-
sponse. The fitness scale is arbitrary derived from the 
Euclidean distance between the MFCC vectors and 
therefore displayed without scale. 
                                                             
1 http://magnus.smartelectronix.com/ 
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The distance between two MFCC vectors is computed 
in the straightforward Euclidean fashion. To compute 
the total distance between two audio snippets, we lay 
them side by side—capitalizing on the fact that we 
know the precise starting points—and sum all distances 
between the MFCC vectors in corresponding frames of 
both files.  

Fig. 2. illustrates the behavior if the fitness function in a 
real case where we only tuned the parameters “Room 
Size” and “Decay Time” of the Ambience plug-in. Not 
all parameters of a plug-in have the same acoustic im-
pact. In this comparison the effect of “Room Size” is 
marginal compared to that of “Decay Time.” 

Most parameters such as “Room Size” result in a con-
tinuous change in the fitness. Some parameters such as 
“Reverberation Type”, however, cause jumps in the 
fitness. This makes automated adjustment harder; espe-
cially with optimization approaches that tend to get 
stuck in local maxima and do not take the whole solu-
tion space into account. Fig. 3. illustrates a very idio-
syncratic behavior that defies most optimization algo-
rithms: The parameters “Variation” and “Diffusion” of 
the Ambience plug-in are intended to create a random 
behavior. 

3.2. Network Rendering 

The computation concerning the audio spectrum is par-
ticularly time-consuming. For speeding up this process 
we implemented a distributed method: The user has to 
decide which of optimization method is to be applied 
and to choose a reference impulse audio file and the dry 
impulse recording that has been used to create the refer-
ence file. These settings are bundled into a job descrip-
tion and stored in the server component of the software. 
On any machine connected to the network one can now 
start a small background application once per processor 
core. This so-called “Cruncher” application registers 
with the server and waits for data. If a new optimization 
process has been started, the plug-in executables to be 
optimized and the reference recording are copied to 
every machine registered. 

The Cruncher applies the VST-based plug-in to the 
audio file, it determines the MFCCs as well as—for 
display purposes—the MPEG-7 spectral envelope, and 
computes the similarity to the reference recording. This 
number and the spectral envelope are sent back to the 
server. 

The optimization algorithm runs within the server. If a 
Cruncher sends back its result, the parameter settings 
can be changed depending on the optimization strategy 
and queued back in the service pipe to be sent to the 
next available crunching slot. The Crunchers request a 
new set of parameters as soon as they run idle. The serv-
ice component then distributes the new settings. 

In every update step of the optimization algorithm, the 
server queues all new settings to be computed next, and 
the network service distributes the tasks to the cruncher 
machines. The more machines join the queue, the more 
parameter settings can be processed in parallel. 

3.3. Optimization 

We implemented four different optimization strategies 
in the software prototype, and compared their perform-
ance. 

Upon starting the optimization, one half of the candi-
dates’ initial settings to be optimized are taken as a ran-
dom selection from the factory settings delivered with 
the plug-in. Often these settings cover a wide range of 
different reverberation sounds and therefore already 
provide appropriate settings. The other half of the can-
didates’ initial settings are populated with random val-
ues. Although the random settings often produce unin-
teresting results, we experienced factory settings that 
had their wet/dry balance set to zero, therefore not pro-
ducing any effect. 

3.3.1. Evolutionary Optimization 

Evolutionary optimization algorithms try to find a 
maximum of a fitness function by tweaking a set of 
candidates—the population—according to principles 
found in biology. In our case, each individual of the 
population is the setting of a reverberation effect. The 
fitness is determined as described before to mimic the 
acoustic similarity of the reverberation effect’s response 
to the given reference. 

The Cruncher network computes the fitness for every 
individual in the population. After this is finished, the 
best individual is recombined with the rest of the popu-
lation and mutated. To this end, one randomly picked 
third of an individual’s is changed by random, and an-
other third is replaced with the corresponding values 
from the best one. 
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3.3.2. Nelder Mead Optimization 
In broad strokes, the Nelder-Mead algorithm, also 
known as downhill simplex algorithm, repeatedly takes 
the worst individual from a set of solutions and mirrors 
it across the centroid of that set. If it does not find a bet-
ter solution there, it also tries to mirror other known 
points. If no better solution becomes apparent, the algo-
rithm assumes that it has encircled a local minimum in 
the function and shrinks all points towards the centroid. 
Although this approach is an efficient way to find min-
ima in a continuous problem space, the algorithm will 
immediately get stuck in a local but non-global extrema, 
which is particularly vexing with non-continuous fitness 
functions. To counteract this behavior, we set the initial 
settings of the candidates as to govern a wide part of the 
problem space.  

3.3.3. Brute-Force Nelder-Mead Optimization 
The simplex algorithm described above cannot be paral-
lelized efficiently due to several steps in the algorithms 
where choices are made upon recalculating the fitness. 
We parallelized the algorithm by simply calculating all 
steps at once and leaving part of the results unused due 
to choices in the algorithm: All possible interim points 
are queued for network rendering. 

3.3.4. Particle Swarm Optimization 

The fourth technique we tested was an optimization 
algorithm devised by Eberhardt and Kennedy [4]. This 
so-called Particle Swarm Optimization (PSO) is inspired 
by the social behavior of bird flocking or fish schooling. 
The PSO approach shares many similarities with the 
evolutionary algorithm described before. A population 
of particles is initialized by the system. Each particle 
carries a vector containing the plug-in settings, and an 
offset vector, which is randomly initialized. In every 
update step the particles are moved through the problem 
space by adding the offset to the current setting. Each 
particle keeps track of its coordinate in problem space 
that has generated the best fitness so far: the local best 
setting. Furthermore, the optimizer keeps track of the 
population’s best setting ever: the global best setting To 
update a particle, its position is shifted toward a random 
blend of the local and the global best settings, see Fig. 4. 

 

Fig. 4: Visualization of the particles’ current settings 
data mapped to a 2D grid (white circles). The particles 
“fly” around between their own local best setting (light 
grey), and the global best setting (black circle). 

3.4. Comparison of the Optimization Algo-
rithms 

Neither of the two implemented simplex algorithms was 
able to solve our problem satisfactorily. Thus, to cover a 
wider range of settings in problem space we chose a 
genetic optimization method. Genetic algorithms can 
easily be parallelized and are also easier to implement 
than the Nelder-Mead approach, as the genomes can be 
computed asynchronously. All we have to track is the 
global best candidate. 

The main advantage of the Particle Swarm Optimization 
compared to Nelder-Mead and the simple evolutionary 
approach is that while the particles are flying through 
the problem space they automatically deal with the non-
continuity of the function and are able to escape a local 
but non-global maximum of the fitness function, unlike 
the Nelder-Mead strategy. They do so with less compu-
tational load than the simple evolutionary algorithm.  

To compare the performance of the different optimiza-
tion algorithms, we recorded the fitness values over 
10,000 parameter changesin a population of 20 candi-
dates ten times for the most promising optimization 
strategies: the Genetic Optimization (see Fig. 5) and the 
Particle Swarm Optimization (see Fig. 6) applied to the 
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“Medium Rooms – Classroom” impulse response taken 
from Sony’s Acoustic Mirror2 Software to be modeled 
with the Ambience VST reverberation plug-in. One can 
see that both optimization algorithms work well in op-
timizing the parameter settings. 

In all cases both algorithms optimize the fitness without 
any protruding values. As the starting values may have a 
high difference due to the random initialization of the 
first 10 candidates (the population’s size was 20), the 
resulting fitness values have a higher deviation in the 
beginning of the optimization process (see Fig. 6) and 
“jump” to a better fitness value after the randomly ini-
tialized candidates are evaluated (see Fig. 5).  

4. LISTENING TEST 

To test the performance of the prototype, we carried out 
a listening test. We conducted a MUSHRA-type com-
parison test to compare hand-crafted plug-in settings 
with settings retrieved from the optimizer. Two profes-
sional sound engineers were asked to set the Ambience 
Reverb and the Black Water Reverb3 as close as possi-
ble to given reference recordings, which were created 
using dry recordings processed with the Sony Acoustic 
Mirror plug-in and the “Medium Rooms – Classroom” 
impulse response. The human listeners were presented 
with correspondingly reverberated music recordings 
processed again with Sony’s Acoustic Mirror. We used 
a drum track and an acoustic guitar track4, each of 15 
seconds’ length, as acoustic material to be processed. 
With the percussive drum track one can clearly perceive 
the reverberation time and falloff characteristic, whereas 
with the guitar recording the reverberation’s timbre 
dominates the acoustic experience. 

 

                                                             
2 DirectX plug-in provided with Sony’s Soundforge 9, 
http://www.sonycreativesoftware.com/soundforge 
3

 Black Water Reverb, http://www.apulsoft.ch/ from 
Black Water Music is based on the open source Free-
verb3 originally developed by Dreampoint. 
4 Sound Check – The Professional Audio Test Disk, by 
Alan Parsons & Stephen Court, track 62 and track 77. 
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Fig. 5: Statistical analysis of ten evolution processes 
over time using the genetic optimization algorithm. 
Light grey: region containing the best fitness values of 
each respective population Dark grey: region containing 
the inner 50 % of the best fitness values of each respec-
tive population. Black Line: Median fitness of all popu-
lations. 
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Fig. 6:  Statistical analysis of ten evolution processes 
over time using the particle swarm optimization algo-
rithm. Light grey: region containing the best fitness val-
ues of each respective population Dark grey: region 
containing the inner 50 % of the best fitness values of 
each respective population. Black Line: Median fitness 
of all populations. 
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Thus, we arrived at four sets for comparison by ear: a 
Black Water Reverb and an Ambience set for both the 
drum and the guitar track. For the automatically opti-
mized settings, we took snapshots after 1000 and after 
10,000 fitness evaluations for each plug-in. These two 
automatically generated settings, the two hand-crafted 
settings, and the reference sample itself constituted the 
sound material to be compare within each of the four 
sets. 

We invited 25 subjects, 12 female and 13 male, 18 of 
them are students within the media technology field, 7 
musicians or sound engineers. For all four sets, the sub-
jects were asked to rank the five sound samples (pre-
sented in random order and without identifying labels) 
against the reference file after their perceived similarity 
in reverberation. Each example could receive 0 through 
4 points, where 4 points represent the best match in the 
respective set.  

 

Fig. 7: The computed MPEG-7 spectral envelopes of 
the compared Ambience settings mapped to grayscale. 
The numbers behind the settings’ names indicate the 
resulting distance to the reference. 

All subjects remarked that the differences between the 
examples were small. Even trained listeners noted that it 
was hard to discern the samples. Nonetheless, as can be 
seen in the box-and-whisker plot in Fig. 9, most users 
successfully identified the reference sound itself as the 

one closest to the reference recording, thus the box’s 
upper and lower quartile are both on the 4 points level. 

 

Fig. 8: The computed MPEG-7 spectral envelopes of 
the compared Black Water Reverb generated settings 
mapped to grayscale. The numbers behind the settings’ 
names indicate the resulting distance to the reference. 
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Fig. 9: The box-and-whisker plot of the combined 
quality test results of all four sound sets indicates that 
the automated settings can keep up with hand-crafted 
settings. For the vertical axis, refer to the text. 

As the median shows, the automatically optimized set-
tings can easily keep up with the hand-crafted ones. 
When comparing the distancevalues in Figs. 7 and 8 to 
the mean values from the listening test in Fig. 9 one can 
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see that the ranking between the different processed 
sounds is coherent, at least for these examples. 

The professionals whom we asked to perform the task 
of adjusting a VST plug-in to resemble a convolution 
reverberation unit all pointed out that the more parame-
ters a reverberation algorithm provides, the more diffi-
cult it gets to set it up. In the case of the Ambience plug-
in, which offers 21 parameters, the hand-crafted results 
were produced in not less than an hour. Even though the 
optimizer runs unattended, this number can be com-
pared with the computing time of the automatic opti-
mizer. This time depends on the speed and number of 
available processor cores. A 2.5 GHz dual-core note-
book computer takes around 30 minutes for 10, 000 
distance computations with the Ambience VST plug-in. 

5. CONCLUSION AND OUTLOOK 

We presented a method to adapt a common VST effect 
plug-in to match a given reference impulse comparing 
different optimization algorithms. A listening test 
showed that the results of our tool can easily keep up 
with handcrafted setting in quality, and outperform 
hand-crafted settings when it comes to counting the time 
to set up a complex reverberation plug-in. Even if it is 
possible for an experienced sound professional to find a 
proper setup for the effect, it might take a long time and 
therefore incur huge costs. 

The tool could also be used to compare the sound qual-
ity of different VST plug-ins. For tasks where limited 
environments compel sound engineer to use simpler 
effect algorithms, such as integrated DSPs with little 
memory, the effect setting could be optimized with our 
tool and then implemented on the integrated module. 

The hugest computational load in the optimization proc-
ess consists in the computation of the difference func-
tion. In a future implementation, this task may be sped 
up by porting it to the graphics card. 
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