
Audio Engineering Society

Convention Paper
Presented at the 126th Convention
2009 May 7–10 Munich, Germany

The papers at this Convention have been selected on the basis of a submitted abstract and extended precis that have been peer
reviewed by at least two qualified anonymous reviewers. This convention paper has been reproduced from the author's advance
manuscript, without editing, corrections, or consideration by the Review Board. The AES takes no responsibility for the contents.
Additional papers may be obtained by sending request and remittance to Audio Engineering Society, 60 East 42nd Street, New
York, New York 10165-2520, USA; also see www.aes.org. All rights reserved. Reproduction of this paper, or any portion thereof,
is not permitted without direct permission from the Journal of the Audio Engineering Society.

 Automatic Adjustment
of Off-the-Shelf Reverberation Effects

Sebastian Heise1, Michael Hlatky1, and Jörn Loviscach2

1 Hochschule Bremen (University of Applied Sciences), 28133 Bremen, Germany
Sebastian@h3e.eu, mhlatky@acm.org

2 Fachhochschule Bielefeld (University of Applied Sciences), 33602 Bielefeld, Germany
jl@j3l7h.de

ABSTRACT

Virtually all effect units that process digital audio—software plug-ins as well as dedicated hardware—can be con-
trolled digitally. This allows subjecting their settings to optimization processes. We demonstrate the automatic adap-
tation of reverberation plug-ins to given room impulse responses. This facilitates replacing computationally expen-
sive convolution reverberation units with standard ones, which also are amenable to easier parameter tweaking after
their overall setting has been adjusted through our method. We propose optimization strategies for this multi-
dimensional non-linear problem that need no adaptation to the particularities of each effect unit, are sped up using
multi-core processors and networked computers. The optimization process evaluates the difference between the ac-
tual response and the targeted response on the basis of psychoacoustic features. An acoustic comparison with effect
parameter settings crafted by professional human operators indicates that the computationally optimized settings
yield comparable or better results.

1. INTRODUCTION

The automatic adjustment of audio effect units is a dif-
ficult task due to product-specific algorithms. The con-
trols offered often do not stick to a standard selection of
parameters. And even when they do, the actual meaning
of numeric settings of parameters such as “Reverbera-

tion Density” varies from unit to unit. To make auto-
matic adjustments, one could try to learn the specific
details of any unit at hand—a gargantuan task. We pro-
pose instead to analyze the effect of the unit on the au-
dio signal and apply optimization routines that treat the
unit as a black box.

The particular application considered in this paper con-
cerns artificial reverberation. This bears practical rele-
vance: Convolution reverberation units, which are based

AES

Heise et al. Automated Adjustments of Reverberation FX

AES 126th Convention, Munich, Germany, 2009 May 7–10

Page 2 of 8

on measured impulse responses, are known to reproduce
the acoustics of a room with great fidelity. However,
they often incur a huge computational load, are not easy
to tweak, and may produce a sterile, static sound if the
impulse response is kept strictly constant. The question
arises what the best setting of a standard, filter-and-
delay-type reverberation unit is to simulate a given
room impulse response.

Fig. 1: The optimizer application adjusts the parameters
of VST-based audio effects through comparing their
impulse responses to a user-defined reference using a
simplified psychoacoustic model.

Our prototype is based on the VST application-
programming interface for audio effect plug-ins. The
program aims at optimizing the settings of reverberation
plug-ins to mimic a given room impulse response, see
Fig. 1. The software can handle a virtually unlimited
number of different plug-ins in parallel, finding an op-
timal one for the given task. In our tests, we used more
than a dozen commercial or freely available reverbera-
tion plug-ins. The automated comparison employs the
Euclidean distance of vectors of Mel-Frequency Cep-
stral Coefficients (MFCCs) [1].

We have implemented and studied four optimization
strategies:

• Evolutionary [2]: A population of genotypes
each of which represents the complete setting

of a plug-in is subjected to mutation, crossover,
and selection. This approach is easily paral-
lelizable.

• Nelder-Mead [3]: The Nelder-Mead approach
tries to fit a simplex body into the problem
space by moving it or shrinking its size. This
method is inherently non-parallel, does not deal
well with discontinuities, and is easily trapped
in local minima.

• Nelder-Mead with brute-force parallelization:
All steps of the standard Nelder-Mead opti-
mizer are computed in parallel, which leaves
some of the computational results unused. Al-
though this speeds up the computational time,
the remaining restrictions of the non-parallel
implementation still apply.

• Particle Swarm Optimization [4]: In this opti-
mization strategy we used artificial swarm in-
telligence to find an optimal solution. This ap-
proach is also easily parallelizable.

The best performing plug-ins that we have tested lead to
a clear progress after 25 to 50 fitness calculations in the
optimization. However, depending on the difference of
the plug-in’s initial settings to the intended result, some-
times 100 steps are required to achieve acoustic similar-
ity. One step requires about a quarter second on a single
processor core. The largest part of this time is consumed
by the computation of the spectral envelopes.

2. RELATED WORK

Being a linear and (theoretically) time-invariant phe-
nomenon, the effect of reverberation on a signal is rela-
tively easy to analyze, as opposed to the effect of, say, a
dynamics compressor. This, too, makes reverberation a
good starting point for automated optimization. The
simpler task of automatic adjustment of equalizers with
genetic algorithms has already been addressed in a mul-
titude of research papers [5][6][7][8].

In previous work [9], one of us already used a genetic
algorithm to find equalizer settings so that the magni-
tude response curve matches anchor points defined by
the user. Since the genetic string used in that work is
relatively short and comparing the curve to the settings

Heise et al. Automated Adjustments of Reverberation FX

AES 126th Convention, Munich, Germany, 2009 May 7–10

Page 3 of 8

could be implemented effectively, it was possible to
find proper settings nearly in real time.

In further previous work [10], one of us already dug into
VST setup libraries and searched for statistical coher-
ence. In this work we concentrated on automated setup
of synthesizer effects, where usually a lot of parameters
show coherence in their settings. Applied to VST rever-
beration effects, one could search for a relation between
different parameters, say, decay and level, and simplify
the interface in combining these parameters in one
knob.

Extra et al [11] compared different reverberation
devices in a listening test to judge their perceived sound
quality. They also compiled a set of analysis tools that
help compare and describe aspects and phenomena of
reverberation. The result of their test was that none of
the proposed objective analysis tools could be used to
replace a listening test in judging the reverberation
sound quality.

3. IMPLEMENTATION

The optimization software applies its specific search
strategy to analyze the effect of the plug-in’s settings
through measuring the first seven seconds of its impulse
response. Since there is no real-time audio output neces-
sary, the plug-ins can compute this signal in a fraction
of the actual playback duration. The development of the
prototype had to address three major issues: how to
compare different reverberation settings, how to distrib-
ute the workload onto several processor cores and/or
several computers, and how to conduct the optimization.

3.1. Comparing Reverberation

The basis of all optimization strategies is formed by a
distance function that estimates the similarity of a sound
sample to a reference. Such a comparison cannot be
undertaken on a sample-per-sample basis: What counts
is the perceived similarity of the sound. In the applica-
tion at hand we capitalize on the fact that most of the
interesting impulse responses sound noisy. Only in ex-
treme cases such as a small room with hard walls we
will get harmonic structures through clearly isolated
reflections. Noisy audio snippets can properly be de-
scribed by MFCCs, which ignore the fine structure of
the frequency spectrum. To capture the temporal devel-

opment of the impulse response into account we extract
the MFCC vectors over time (26 MFCCs, sampling fre-
quency: 44,100 Hz, frame size: 2048 samples, overlap:
50%).

Fig. 2: 10,000 random settings of the Ambience1 VST
reverb’s parameters “Room Size” and “Decay Time”
versus the computed fitness against a given room im-
pulse response. The fitness scale is arbitrary derived
from the Euclidean distance between the MFCC vectors
and therefore displayed without scale.

Fig. 3: 10,000 random settings of the Ambience plug-
in’s parameters “Variation” and “Diffusion” versus the
computed fitness against a given room impulse re-
sponse. The fitness scale is arbitrary derived from the
Euclidean distance between the MFCC vectors and
therefore displayed without scale.

1 http://magnus.smartelectronix.com/

Heise et al. Automated Adjustments of Reverberation FX

AES 126th Convention, Munich, Germany, 2009 May 7–10

Page 4 of 8

The distance between two MFCC vectors is computed
in the straightforward Euclidean fashion. To compute
the total distance between two audio snippets, we lay
them side by side—capitalizing on the fact that we
know the precise starting points—and sum all distances
between the MFCC vectors in corresponding frames of
both files.

Fig. 2. illustrates the behavior if the fitness function in a
real case where we only tuned the parameters “Room
Size” and “Decay Time” of the Ambience plug-in. Not
all parameters of a plug-in have the same acoustic im-
pact. In this comparison the effect of “Room Size” is
marginal compared to that of “Decay Time.”

Most parameters such as “Room Size” result in a con-
tinuous change in the fitness. Some parameters such as
“Reverberation Type”, however, cause jumps in the
fitness. This makes automated adjustment harder; espe-
cially with optimization approaches that tend to get
stuck in local maxima and do not take the whole solu-
tion space into account. Fig. 3. illustrates a very idio-
syncratic behavior that defies most optimization algo-
rithms: The parameters “Variation” and “Diffusion” of
the Ambience plug-in are intended to create a random
behavior.

3.2. Network Rendering

The computation concerning the audio spectrum is par-
ticularly time-consuming. For speeding up this process
we implemented a distributed method: The user has to
decide which of optimization method is to be applied
and to choose a reference impulse audio file and the dry
impulse recording that has been used to create the refer-
ence file. These settings are bundled into a job descrip-
tion and stored in the server component of the software.
On any machine connected to the network one can now
start a small background application once per processor
core. This so-called “Cruncher” application registers
with the server and waits for data. If a new optimization
process has been started, the plug-in executables to be
optimized and the reference recording are copied to
every machine registered.

The Cruncher applies the VST-based plug-in to the
audio file, it determines the MFCCs as well as—for
display purposes—the MPEG-7 spectral envelope, and
computes the similarity to the reference recording. This
number and the spectral envelope are sent back to the
server.

The optimization algorithm runs within the server. If a
Cruncher sends back its result, the parameter settings
can be changed depending on the optimization strategy
and queued back in the service pipe to be sent to the
next available crunching slot. The Crunchers request a
new set of parameters as soon as they run idle. The serv-
ice component then distributes the new settings.

In every update step of the optimization algorithm, the
server queues all new settings to be computed next, and
the network service distributes the tasks to the cruncher
machines. The more machines join the queue, the more
parameter settings can be processed in parallel.

3.3. Optimization

We implemented four different optimization strategies
in the software prototype, and compared their perform-
ance.

Upon starting the optimization, one half of the candi-
dates’ initial settings to be optimized are taken as a ran-
dom selection from the factory settings delivered with
the plug-in. Often these settings cover a wide range of
different reverberation sounds and therefore already
provide appropriate settings. The other half of the can-
didates’ initial settings are populated with random val-
ues. Although the random settings often produce unin-
teresting results, we experienced factory settings that
had their wet/dry balance set to zero, therefore not pro-
ducing any effect.

3.3.1. Evolutionary Optimization

Evolutionary optimization algorithms try to find a
maximum of a fitness function by tweaking a set of
candidates—the population—according to principles
found in biology. In our case, each individual of the
population is the setting of a reverberation effect. The
fitness is determined as described before to mimic the
acoustic similarity of the reverberation effect’s response
to the given reference.

The Cruncher network computes the fitness for every
individual in the population. After this is finished, the
best individual is recombined with the rest of the popu-
lation and mutated. To this end, one randomly picked
third of an individual’s is changed by random, and an-
other third is replaced with the corresponding values
from the best one.

Heise et al. Automated Adjustments of Reverberation FX

AES 126th Convention, Munich, Germany, 2009 May 7–10

Page 5 of 8

3.3.2. Nelder Mead Optimization
In broad strokes, the Nelder-Mead algorithm, also
known as downhill simplex algorithm, repeatedly takes
the worst individual from a set of solutions and mirrors
it across the centroid of that set. If it does not find a bet-
ter solution there, it also tries to mirror other known
points. If no better solution becomes apparent, the algo-
rithm assumes that it has encircled a local minimum in
the function and shrinks all points towards the centroid.
Although this approach is an efficient way to find min-
ima in a continuous problem space, the algorithm will
immediately get stuck in a local but non-global extrema,
which is particularly vexing with non-continuous fitness
functions. To counteract this behavior, we set the initial
settings of the candidates as to govern a wide part of the
problem space.

3.3.3. Brute-Force Nelder-Mead Optimization
The simplex algorithm described above cannot be paral-
lelized efficiently due to several steps in the algorithms
where choices are made upon recalculating the fitness.
We parallelized the algorithm by simply calculating all
steps at once and leaving part of the results unused due
to choices in the algorithm: All possible interim points
are queued for network rendering.

3.3.4. Particle Swarm Optimization

The fourth technique we tested was an optimization
algorithm devised by Eberhardt and Kennedy [4]. This
so-called Particle Swarm Optimization (PSO) is inspired
by the social behavior of bird flocking or fish schooling.
The PSO approach shares many similarities with the
evolutionary algorithm described before. A population
of particles is initialized by the system. Each particle
carries a vector containing the plug-in settings, and an
offset vector, which is randomly initialized. In every
update step the particles are moved through the problem
space by adding the offset to the current setting. Each
particle keeps track of its coordinate in problem space
that has generated the best fitness so far: the local best
setting. Furthermore, the optimizer keeps track of the
population’s best setting ever: the global best setting To
update a particle, its position is shifted toward a random
blend of the local and the global best settings, see Fig. 4.

Fig. 4: Visualization of the particles’ current settings
data mapped to a 2D grid (white circles). The particles
“fly” around between their own local best setting (light
grey), and the global best setting (black circle).

3.4. Comparison of the Optimization Algo-
rithms

Neither of the two implemented simplex algorithms was
able to solve our problem satisfactorily. Thus, to cover a
wider range of settings in problem space we chose a
genetic optimization method. Genetic algorithms can
easily be parallelized and are also easier to implement
than the Nelder-Mead approach, as the genomes can be
computed asynchronously. All we have to track is the
global best candidate.

The main advantage of the Particle Swarm Optimization
compared to Nelder-Mead and the simple evolutionary
approach is that while the particles are flying through
the problem space they automatically deal with the non-
continuity of the function and are able to escape a local
but non-global maximum of the fitness function, unlike
the Nelder-Mead strategy. They do so with less compu-
tational load than the simple evolutionary algorithm.

To compare the performance of the different optimiza-
tion algorithms, we recorded the fitness values over
10,000 parameter changesin a population of 20 candi-
dates ten times for the most promising optimization
strategies: the Genetic Optimization (see Fig. 5) and the
Particle Swarm Optimization (see Fig. 6) applied to the

Heise et al. Automated Adjustments of Reverberation FX

AES 126th Convention, Munich, Germany, 2009 May 7–10

Page 6 of 8

“Medium Rooms – Classroom” impulse response taken
from Sony’s Acoustic Mirror2 Software to be modeled
with the Ambience VST reverberation plug-in. One can
see that both optimization algorithms work well in op-
timizing the parameter settings.

In all cases both algorithms optimize the fitness without
any protruding values. As the starting values may have a
high difference due to the random initialization of the
first 10 candidates (the population’s size was 20), the
resulting fitness values have a higher deviation in the
beginning of the optimization process (see Fig. 6) and
“jump” to a better fitness value after the randomly ini-
tialized candidates are evaluated (see Fig. 5).

4. LISTENING TEST

To test the performance of the prototype, we carried out
a listening test. We conducted a MUSHRA-type com-
parison test to compare hand-crafted plug-in settings
with settings retrieved from the optimizer. Two profes-
sional sound engineers were asked to set the Ambience
Reverb and the Black Water Reverb3 as close as possi-
ble to given reference recordings, which were created
using dry recordings processed with the Sony Acoustic
Mirror plug-in and the “Medium Rooms – Classroom”
impulse response. The human listeners were presented
with correspondingly reverberated music recordings
processed again with Sony’s Acoustic Mirror. We used
a drum track and an acoustic guitar track4, each of 15
seconds’ length, as acoustic material to be processed.
With the percussive drum track one can clearly perceive
the reverberation time and falloff characteristic, whereas
with the guitar recording the reverberation’s timbre
dominates the acoustic experience.

2 DirectX plug-in provided with Sony’s Soundforge 9,
http://www.sonycreativesoftware.com/soundforge
3

 Black Water Reverb, http://www.apulsoft.ch/ from
Black Water Music is based on the open source Free-
verb3 originally developed by Dreampoint.
4 Sound Check – The Professional Audio Test Disk, by
Alan Parsons & Stephen Court, track 62 and track 77.

0

500

1000

1500

2000

2500

3000

3500

1 10 100 1000 10000
Number of Iterations

Fi
tn

es
s

100% 50% Median
Fig. 5: Statistical analysis of ten evolution processes
over time using the genetic optimization algorithm.
Light grey: region containing the best fitness values of
each respective population Dark grey: region containing
the inner 50 % of the best fitness values of each respec-
tive population. Black Line: Median fitness of all popu-
lations.

0

500

1000

1500

2000

2500

3000

3500

1 10 100 1000 10000

100% 50% Median

Number of Iterations

Fi
tn

es
s

Fig. 6: Statistical analysis of ten evolution processes
over time using the particle swarm optimization algo-
rithm. Light grey: region containing the best fitness val-
ues of each respective population Dark grey: region
containing the inner 50 % of the best fitness values of
each respective population. Black Line: Median fitness
of all populations.

Heise et al. Automated Adjustments of Reverberation FX

AES 126th Convention, Munich, Germany, 2009 May 7–10

Page 7 of 8

Thus, we arrived at four sets for comparison by ear: a
Black Water Reverb and an Ambience set for both the
drum and the guitar track. For the automatically opti-
mized settings, we took snapshots after 1000 and after
10,000 fitness evaluations for each plug-in. These two
automatically generated settings, the two hand-crafted
settings, and the reference sample itself constituted the
sound material to be compare within each of the four
sets.

We invited 25 subjects, 12 female and 13 male, 18 of
them are students within the media technology field, 7
musicians or sound engineers. For all four sets, the sub-
jects were asked to rank the five sound samples (pre-
sented in random order and without identifying labels)
against the reference file after their perceived similarity
in reverberation. Each example could receive 0 through
4 points, where 4 points represent the best match in the
respective set.

Fig. 7: The computed MPEG-7 spectral envelopes of
the compared Ambience settings mapped to grayscale.
The numbers behind the settings’ names indicate the
resulting distance to the reference.

All subjects remarked that the differences between the
examples were small. Even trained listeners noted that it
was hard to discern the samples. Nonetheless, as can be
seen in the box-and-whisker plot in Fig. 9, most users
successfully identified the reference sound itself as the

one closest to the reference recording, thus the box’s
upper and lower quartile are both on the 4 points level.

Fig. 8: The computed MPEG-7 spectral envelopes of
the compared Black Water Reverb generated settings
mapped to grayscale. The numbers behind the settings’
names indicate the resulting distance to the reference.

0

1

2

3

4

Reference 1,000th 10,000th Hand-cra!ed 1 Hand-cra!ed 2

Fig. 9: The box-and-whisker plot of the combined
quality test results of all four sound sets indicates that
the automated settings can keep up with hand-crafted
settings. For the vertical axis, refer to the text.

As the median shows, the automatically optimized set-
tings can easily keep up with the hand-crafted ones.
When comparing the distancevalues in Figs. 7 and 8 to
the mean values from the listening test in Fig. 9 one can

Heise et al. Automated Adjustments of Reverberation FX

AES 126th Convention, Munich, Germany, 2009 May 7–10

Page 8 of 8

see that the ranking between the different processed
sounds is coherent, at least for these examples.

The professionals whom we asked to perform the task
of adjusting a VST plug-in to resemble a convolution
reverberation unit all pointed out that the more parame-
ters a reverberation algorithm provides, the more diffi-
cult it gets to set it up. In the case of the Ambience plug-
in, which offers 21 parameters, the hand-crafted results
were produced in not less than an hour. Even though the
optimizer runs unattended, this number can be com-
pared with the computing time of the automatic opti-
mizer. This time depends on the speed and number of
available processor cores. A 2.5 GHz dual-core note-
book computer takes around 30 minutes for 10, 000
distance computations with the Ambience VST plug-in.

5. CONCLUSION AND OUTLOOK

We presented a method to adapt a common VST effect
plug-in to match a given reference impulse comparing
different optimization algorithms. A listening test
showed that the results of our tool can easily keep up
with handcrafted setting in quality, and outperform
hand-crafted settings when it comes to counting the time
to set up a complex reverberation plug-in. Even if it is
possible for an experienced sound professional to find a
proper setup for the effect, it might take a long time and
therefore incur huge costs.

The tool could also be used to compare the sound qual-
ity of different VST plug-ins. For tasks where limited
environments compel sound engineer to use simpler
effect algorithms, such as integrated DSPs with little
memory, the effect setting could be optimized with our
tool and then implemented on the integrated module.

The hugest computational load in the optimization proc-
ess consists in the computation of the difference func-
tion. In a future implementation, this task may be sped
up by porting it to the graphics card.

6. REFERENCES

[1] Kim, H.-G., Moreau, N. and Sikora, T.: MPEG-7
Audio and Beyond - Audio Content Indexing and
Retrieval. John Wiley & Sons Ltd (West Sussex,
England 2005) 79, 2005.

[2] Fogel, L. J.; Owens, A. J. and Walsh, M. J.: Artifi-
cial Intelligence through Simulated Evolution (John
Wiley, 1966 New York, NY, USA), 1966.

[3] Nelder, J. A. and Mead, R. A.: A Simplex Method
for Function Minimization. Computer Journal, 1965
no. 7, 308-313, 1965.

[4] Kennedy, J. and Eberhart, R.: Particle swarm opti-
mization. Presented at the IEEE International. Con-
ference on Neural Networks, (Perth, Australia, No-
vember 27 – December 1, 1995), 1995.

[5] Rimell A. and Hawksford, M.: The application of
genetic algorithms to digital audio filters. Presented
at the 98th AES Convention (Paris, France, Febru-
ary 25–28, 1995), 1995.

[6] Uesaka, K. and Kawamata, M.: Evolutionary syn-
thesis of digital filter structures using genetic pro-
gramming. In IEEE Transactions on Circuits and
Systems II: Analog and Digital Signal Processing
50, 2003, no. 12, 977–783, 2003

[7] Tsai, J.-T., Chou, J.-H. and Liu T.-K.: Optimal de-
sign of digital IIR filters by using hybrid Taguchi
genetic algorithm. In IEEE Transactions on Indus-
trial Electronics 53, 2006, no. 3, 867–879, 2006.

[8] Yu Y.; Xinjie, Y.: Cooperative coevolutionary ge-
netic algorithm for digital IIR filter design. In IEEE
Transactions on Industrial Electronics 54, 2007, no.
3, 1311–1318, 2007.

[9] Loviscach, J.: Graphical Control of a Parametric
Equalizer. Presented at the 124th AES Convention,
(Amsterdam, The Netherlands, May 17-20, 2008),
2008.

[10] Loviscach, J.: Programming a Music Synthesizer
through Data Mining. Presented at the 8th NIME
Conference, (Genova, Italy, June 5-7, 2008), 2008.

[11] Extra, D., Simmer, U., Fischer, S., and Bitzer, J.:
Artificial Reverberation: Comparing algorithms by
using monaural analysis tools. Presented at the 121st
AES Convention, (San Francisco, CA, USA Octo-
ber 5-8. 2006), 2006.

