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ABSTRACT 

Any audio recording can be turned into a digital musical instrument by feeding it into an audio sampler. However, it 
is difficult to edit such a sound in musical terms or even to control it in real time with musical expression. This does 
not change much if a more sophisticated resynthesis method is applied. Many electronic musicians appreciate the 
direct and clear access to sound parameters a traditional analog synthesizer offers. Can one automatically generate a 
synthesizer setting that approximates a given audio recording and thus clone a given sound to be controlled with the 
standard functions of the particular synthesizer employed? Even though this problem seems highly complex, we 
demonstrate that its solution becomes feasible with today’s computer systems. We compare sounds on the basis of 
acoustic features known from Music Information Retrieval and apply a specialized optimization strategy to adjust 
the settings of VST instruments, which is sped up using multi-core processors and networked computers. 

 
1. INTRODUCTION 

The automatic adjustment of music synthesizers to 
simulate a given recorded sample is a difficult task for 
three reasons: First, it is not evident how one should 
specify the error metric of the search process; obvi-
ously, a comparison of the original and the simulated 
waveform on a sample-by-sample basis would be by far 
too picky, as the waveforms should only sound similar, 
which can be achieved by very highly differing wave-
forms. Second, the search is non-linear and comprises a 

large number of dimensions, some of them not continu-
ous but discrete. This leads to optimization algorithms 
exploring only fraction of the solution space and/or get-
ting stuck in local extremums. Third, the parameters of 
a standard synthesizer rarely stick to a standard selec-
tion. And even when they do, the actual meaning of 
numeric settings of parameters such as “Shape” or 
“Resonance” varies from unit to unit. We have created a 
system that successfully addresses all three of these is-
sues for a broad range of sounds and synthesizer units. 
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2. RELATED WORK 

The cloning of sounds is a method used widely in popu-
lar music – musicians often try to adapt their “style” to 
cover an idol, using similar instrumentation and record-
ing techniques. In a musical genre called “beatboxing.” 
artists realistically emulate especially drum and percus-
sion instruments only with their mouth, lips, tongue and 
voice. Even in nature, moths mimic sounds of bats as 
defense strategy [2], and the lyre bird has perfected 
mimicking human-produced sounds as that it can for 
example sing realistic-sounding camera-shutter or 
chain-saw tones [3].  

However in computer science, the optimized cloning of 
arbitrary sounds has not been addressed yet, most 
probably due to the fact that the problem is highly com-
plex. What has been achieved so far is the frequency-
domain adjustment of sounds by means of equalization, 
which is often utilized in ADR matching [11]. This 
however does not require any optimization strategy, as 
precise adaption in frequency domain can be undertaken 
very effectively with sufficient FIR filters.  

In a previous work [9], one of the authors already used a 
genetic optimization algorithm to find equalizer settings 
so that the magnitude response curve matches anchor 
points defined by the user. Genetic optimization meth-
ods are also known to be highly effective in filter design 
[4][5][6][7][8].  

In further previous work [10], one of the authors 
searched for statistical coherence in VST synthesizer 
setup libraries in order to simplify the adjustment of a 
highly-parameterized synthesizer by means of on pa-
rameter change automatically adjusting further, intrinsi-
cally unaffected parameters. 

Ultimately, in previous work we addressed the auto-
matic adjustment of VST reverberation effects [1]. In 
this work we demonstrated software that uses given 
room impulse response recordings and optimizes the 
settings of standard VST reverberation plug-in in order 
to achieve perceived similarity of the reverberation pro-
duced by the plug-in in comparison to convolution with 
the impulse response. We showed that results of the tool 
could easily keep up with the quality of hand-crafted 
settings by professionals at a higher speed in the plug-
in’s setting up time. In this work we extend the topic to 
all recorded audio files as optimization target and use 
more generic plug-ins such as standard VST synthesiz-
ers. 

3. IMPLEMENTATION 

3.1. Audio Similarity 

In perceived tonal audio, three features must resemble 
technically in order to provide an impression of “simi-
larity” to the listener. The overall spectrum’s shape 
(timbre), the volume curve over time (loudness), and the 
fundamental frequency (pitch). In studies conducted in 
1977, Grey [14] identified two vital acoustic features: 
“spectral energy distribution” and “synchronicity in the 
collective attacks and decays of upper harmonics,” 
which are required to be similar in order to allow for 
perceived similarity in two different sounds. 

In the opinion of the authors, in order to achieve per-
ceived similarity, especially the onset of a sound must 
be cloned as accurately as possible. Furthermore, the 
cloned sound must have the same fundamental fre-
quency, and the loudness envelope must be similar. 

Our software analyzes the audio output of a VST syn-
thesizer plug-in, compares it to a given recording and 
adjust the parameters of the plug-in in order to achieve 
perceived similarity between the two sounds. As there is 
no need for real-time audio output during the optimiza-
tion, the plug-ins can run at full speed and need not be 
throttled to a given playback samplerate. Hence, the 
computation can be accomplished in a fraction of the 
actual audio playback duration.  

3.2. Similarity Measure 

To capture the similarity of the original and the synthe-
sized sound, the comparison of the synthesizer’s audio 
data to the target recording is not based on the wave-
forms as such but on acoustic features extracted from 
them. Mel-Frequency Cepstral Coefficients (MFCCs) 
[12] are a first choice here. They are known to represent 
all noisy signals well, as they bear information about the 
spectrum’s general shape. However, MFCCs alone do 
not suffice to fully represent tonal sounds, which are 
typical for most musical instruments.  

In previous work [1], when comparing only the rever-
beration tail of an impulse response, MFCCs over time 
proved to be sufficient enough to allow for realistic-
sounding results. In this work, however, when compar-
ing by far more complex sounds, as for example record-
ings of piano notes, drums or violins, MFCCs over time 
alone did not prove to be an effective measure. As all 
MFCCs over time enter the comparison with equal 
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weight, a sound could be found as “similar” by the 
software, which indeed resembles the bulk of the origi-
nal quite accurately; the synthesized sound’s onset, 
however, was highly different from the original's, thus 
resulting in perceived dissimilarity. In informal listening 
tests, especially the optimized sound’s onset turned out 
to be very crucial for the perceived similarity. We there-
fore opted for a solution that allows trading off preci-
sion in the time domain (thus being able to clone the 
sound’s onset as well as possible) against precision in 
the frequency domain (thus being able to achieve the 
correct fundamental frequency and overall spectral en-
velope). To facilitate balancing the optimization be-
tween frequency domain and time domain, we form the 
spectrum of the MFCCs over time by applying a further 
discrete cosine transformation (DCT).  

The system extract the 26 MFCCs from audio sampled 
at 44.1 kHz at a window size of 1024 samples with 50% 
overlapping windows. Then a 1-D DCT is taken of each 
MFCC over time. This results in a matrix with the first 

column (y-axis) containing the “offset” of each of the 
26 MFCCs, and each line (x-axis) the frequency content 
of every MFCC’s time series. By now allowing for a 
weighting on the x- and y-axis of this matrix in the 
comparison, we can differentiate between an optimiza-
tion targeting the frequency domain and one targeting 
the time domain. This allows for a differentiation in the 
optimization for more accurate sound onset, or for a 
more accurate volume envelope. Taking both dimen-
sions always fully into account is rather disadvanta-
geous, as it often exceeds the capabilities of the used 
synthesizer plug-in. The software actually only allows 
for a selection of how many values in x- and in y-
domain are taken into account. By including all values 
in the x-domain and only, say, 5 in the y-domain, the 
software compares with a high resolution in time-
domain, and by including all 26 values in the x-domain, 
however less in the y-domain, a high tonal resolution is 
achieved in the optimization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: The design of the MFCC matrix and the corresponding cosine-transformed DCT MFCC matrix. In the lower 
part of the figure, exemplary data for a snare drum recording are displayed. 
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Fig. 2: Spectrograms of the original recordings versus the best candidates in the course of the optimization. In 
10,000 optimization steps, each time a new best candidate was found the spectrogram is plotted in comparison to the 
original sound’s spectrogram above. The figure is screen-captured from Audacity’s spectrum display. 
 
As examples for this work we used a dry snare drum 
recording, a classical synthesizer chord, and a piano 
recording. All three audio files were cloned automati-
cally by our software and the free ASynth2 VST plug-in. 
The plug-in is a six-voice virtual analog synthesizer 
with two oscillators and three circuit modeled filters. 
Obviously the plug-in will not produce the original 
sound completely realistic-sounding, as the plug-in 
lacks the acoustic variability. It is, however, astonishing 
how close the plug-in’s results come to the original re-
cordings after just a few optimization steps.  

In Fig. 2, the course of the optimization is displayed. In 
10,000 optimization steps, every time a new better can-
didate was found by the system, its spectrum over time 
is plotted in the timeline with the original sound’s spec-
trum overt time as comparison above. The figure of 
10,000 optimization denotes the number of comparisons 
between the original and the candidates. 

For the comparison, the software simply computes the 
Euclidean difference between the DCT matrices of the 
original and of the candidate. A lower value here depicts 
higher similarity. This simple approach was favored 

                                                
2 http://antti.smartelectronix.com/ 

above more complicated distance measures suggested 
by the MIR community because of its computational 
efficiency while maintaining stable results. Further-
more, Herrera et. al. [15] as well as Jensen et. al. [16] 
have shown that a specific distance measure is not cru-
cial for a feature comparison’s results. 

3.3. Optimization 

In previous work [1], we already compared four differ-
ent optimization strategies to tackle this challenging 
problem. The optimization of a synthesizer plug-in is 
high-dimensional and highly non-linear. Common syn-
thesizer plug-ins to be found in digital audio production 
normally have more then 50 parameters, which all have 
to be taken into account during the optimization proc-
ess. 

We tackle this problem with a dedicated optimization 
algorithm, a Particle Swarm Optimization (PSO) [13]. 
In our earlier work [1] this technique proved to be the 
most reliable. We did, however, also test an evolution-
ary genetic algorithm, and a simplex optimization 
method. However, as the results did not differ in terms 
of optimization accuracy and speed from our earlier 
research, they are not considered further here. 
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The PSO algorithm works as follows: A population of 
particles is initialized by the system. Each particle car-
ries a vector containing the plug-in settings, and an off-
set vector, which is randomly initialized. In every up-
date step the particles are moved through the problem 
space by adding the offset to the current setting. Each 
particle keeps track of its coordinate in problem space 
that has generated the best similarity measure so far: the 
local best setting. Furthermore, the optimizer keeps 
track of the population’s best setting ever: the global 
best setting To update a particle, its position is shifted 
toward a random blend of the local and the global best 
settings. The PSO algorithm provides the VST plug-in 
with all parameter settings as well as with single MIDI 
note event. This note's number, its note-on and note-off 
times, and its velocity are also subject to optimization. 

3.4. Software 

The Software is implemented in C# using the Microsoft 
.Net 3.5 framework. The optimizer functions as a server 
application, tracking the optimization history and as-
signing tasks to a user-defined number of client 
cruncher processes, which can be spread over a network 
of interconnected machines. The communication be-
tween the cruncher client and the optimization server is 
carried out using named pipes [17]. Each cruncher client 
contains its own VST host. 

 

Fig. 4: The user interface of the prototype software. On 
the main screen, the MPEG 7 spectral envelopes of the 
sounds are displayed, the cruncher clients display job 
state information. 

When a client crunches launches, all VST synthesizer 
DLLs as well as the original recording’s DCT MFCC 
matrix are provided to the cruncher client processes. 

As the optimization proceeds, the crunchers receive new 
VST settings from the optimization server, compute the 
plug-in’s audio data, extract the data’s features, com-
pute the DCT MFCC matrix and then compare it to the 
original recording’s dataset, from which they calculate 
the distance measure. This value is submitted back to 
the optimization server, again via a named pipe.  

 

Fig. 5: Schematical overview of the software: The soft-
ware prototype consists of four main parts: The PCM 
Analysis as described in 3.2, The Feature Comparison, 
the Optimization and the VST Host. 

The optimization server tracks all evaluated VST set-
tings along with the corresponding distance as similarity 
rating. Furthermore, for user interface purposes, the 
MPEG 7 spectral envelope [18] of each new candidate 
is extracted as well and displayed to the user. This fea-
ture is consumes most of the computational power; it 
can be switched off for greater performance.  
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Fig. 6: The results of the optimization after 10.000 cycles. On the left-hand side of the figure, the spectrogram of the 
original snare drum, synthesizer patch and piano note recording are plotted. On the right-hand side, the correspond-
ing synthesized sounds are shown. What clearly can be seen is that the fundamental frequencies of the original 
sounds were met, as well the on-set characteristics. The duration of the sound were not mimicked in the first two 
examples, the resulting audio “sounds” similar due to the similarity in the overall spectrum envelope. 
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Fig. 7: Example for the optimization: A recording of a 
snare drum, a synthesizer patch and a piano note are 
given as original. Our software adjusts the parameters of 

the ASynth plug-in in such a way that it produced the 
candidate waveforms after 10,000 optimization steps. 

4. RESULTS 

In Fig. 6, spectrograms are displayed for each of the 
original and the corresponding optimized sounds after 
10,000 optimization steps. For the cloning of the snare 
drum recording and the synthesizer patch sound, we 
opted for a higher tonal reproduction, therefore taking 
all 26 DCTs of the MFCCs into account, and 50% of the 
available time information. For the snare drum record-
ing, with a 1024 sample window and 50% overlap, the 
software calculates 23 MFCC vectors over time. After 
the linear-scanning DCT for every coefficient, the first 
12 frequency coefficients of each MFCC are used in the 
optimization process. This yields to a 12x26-value ma-
trix in the optimization process. The synthesizer patch’s 
matrix with the same weighting in the course of the op-
timization had 20x26 values. For the cloning of the pi-
ano note recording, we opted for a higher time-span 
reproduction, therefore taking only 50% of the MFCCs 
into account, but all the available information in the 
time domain, thus yielding to a 13x112 matrix. The 
fundamental frequency of the original piano note re-
cording was still found accurately in the course of the 
optimization. Fig. 7 shows the corresponding waveform 
displays for all sounds. 

From the waveforms, the similarity of the sounds is not 
obvious, and also from the spectrograms in Fig. 7 the 
similarity can not be judged completely. One can, how-
ever observe the similarity in the spectrograms in terms 
of fundamental frequency, spectral shape, attack and 
decay characteristics of the sounds as well as the overall 
duration. 

5. CONCLUSION AND OUTLOOK 

We have demonstrated a software that allows for clon-
ing of any recorded sounds with by VST software syn-
thesizers, insofar as the provided VST plug-in can pro-
duce a similar-sounding audio output. The plug-in’s 
settings are obtained using a Particle Swarm Optimiza-
tion strategy, the similarity measure is calculated using 
the difference of the coefficient-wise discrete Cosine 
Transform of the Mel-Frequency Cepstral Coefficients 
of the synthesizer’s audio output and the original audio 
recording. Within the capabilities of the utilized plug-in, 
the optimization usually finds adequate settings of the 
optimization plug-in after only 2,000 similarity ratings, 
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mostly already the tenth found candidate bears signifi-
cant similarity to the provided audio material. The com-
putation of 10,000 optimization cycles usually takes one 
hour on a standard laptop computer with two processing 
cores.   

Future work may incorporate the use of more sophisti-
cated synthesizer plug-in’s to not be limited by a plug-
in’s capabilities, and listening tests to judge the quality 
and the similarity of the cloned sounds in comparison to 
the original recordings. 

6. REFERENCES 

[1] Heise, S., Hlatky, M., Loviscach, J.: Automatic 
Adjustment of Off-the-Shelf Reverberation Effects. 
Presented at the 126th AES Convention, (Munich, 
Germany, May 7-10 2009), 2009. 

[2] Wake Forest University (2007, May 30). Moths 
Mimic Sounds To Survive. ScienceDaily. Retrieved 
July 13, 2009, from http://www.sciencedaily.com- 
/releases/2007/05/070529211003.htm 

[3] http://www.youtube.com/watch?v=VjE0Kdfos4Y 

[4] Rimell A. and Hawksford, M.: The application of 
genetic algorithms to digital audio filters. Presented 
at the 98th AES Convention (Paris, France, Febru-
ary 25–28, 1995), 1995. 

[5] K. Uesaka and M. Kawamata, “Evolutionary syn-
thesis of digital filter structures using genetic pro-
gramming,” IEEE Transactions on Circuits and 
Systems II: Analog and Digital Signal Processing 
50 (2003), no. 12, 977–783. 

[6] V. Aggarwal and W. Jin, “Filter approximation 
using explicit time and frequency domain 
specifications,” GECCO’06, 753–760. 

[7] J.-T. Tsai, J.-H. Chou, and T.-K. Liu, “Optimal 
design of digital IIR filters by using hybrid Taguchi 
genetic algorithm,” IEEE Transactions on Industrial 
Electronics 53 (2006), no. 3, 867–879. 

[8] Y. Yu and Y. Xinjie, “Cooperative coevolutionary 
genetic algorithm for digital IIR filter design,” 
IEEE Transactions on Industrial Electronics 54 
(2007), no. 3, 1311–1318. 

[9] Loviscach, J.: Graphical Control of a Parametric 
Equalizer. Presented at the 124th AES Convention, 
(Amsterdam, The Netherlands, May 17-20, 2008), 
2008. 

[10] Loviscach, J.: Programming a Music Synthesizer 
through Data Mining. Presented at the 8th NIME 
Conference, (Genova, Italy, June 5-7, 2008), 2008. 

[11] http://support.apple.com/kb/TA23246?viewlocale=
en_US 

[12] J. Foote. Content-based retrieval of music and 
audio. In C.-C. J. Kuo, editor, Multimedia Storage 
and Archiving Systems II, Proceedings of SPIE, 
pages 138–147, 1997. 

[13] Kennedy, J. and Eberhart, R.: Particle swarm opti-
mization. Presented at the IEEE International. Con-
ference on Neural Networks, (Perth, Australia, No-
vember 27 – December 1, 1995), 1995. 

[14] Grey, J. M. (1977). Multidimensional perceptual 
scaling of musical timbres. Journal of the Acousti-
cal Society of America, 61(5), 1270-177. 

[15] http://ismir2000.ismir.net/papers/herrera_paper.pdf 

[16] http://www.ee.columbia.edu/~dpwe/pubs/JenECJ07
-gmmdist.pdf 

[17] http://msdn.microsoft.com/en-
us/library/aa365590(VS.85).aspx 

[18] Kim, H.-G., Moreau, N. and Sikora, T.: MPEG-7 
Audio and Beyond - Audio Content Indexing and 
Retrieval. John Wiley & Sons Ltd (West Sussex, 
England 2005) 79, 2005. AES Convention, (San 
Francisco, CA, USA October 5-8. 2006), 2006. 


