
A Malleable Drum

Christoph von Tycowicz∗ Jörn Loviscach†

Hochschule Bremen (University of Applied Sciences)

Figure 1: The user can hit or press the drum at 16 locations and at
the same time control the drum’s shape on the touch panel.

1 Introduction

We present a virtual drum with a large range of interaction modes:
The user can change the shape of the drum while playing it through
a controller that offers hitting the virtual drum skin at 16 different
points as well as simultaneously damping it and pushing it in. The
real-time, low-latency simulation leverages the computing power
of a GPU, which allows the resolution of the mesh to be increased
greatly. This and the interactive control of shape and local tension
are differences to the work of Jones and Schloss [2007].

The synthesis of percussive sounds can be accomplished very ef-
ficiently through modal synthesis, where a set of eigenfrequencies
is computed in a preprocessing step, see for instance Raghuvanshi
and Lin [2006]. Modal synthesis, however, cannot easily handle
changes in a drum’s physical properties. More versatile options
are finite-element methods and waveguide meshes [Murphy et al.
2007]. Aiming at a minimum complexity for the GPU-based im-
plementation, we use a finite-difference method, as known from the
simulation of shallow water waves.

2 Method

To input drum strokes and to control the local tension and damp-
ing by pressure, the MIDI controller Akai MPD24 is used. It can
transmit the pressure independently for each of its 16 pads. The
drum shape is edited on a touch panel display: The user can edit
the position of anchor points, which define the rim’s shape through
a cardinal spline with adjustable tension.

The drum skin is modeled by a rectangular mesh of 64 × 64 point
masses, each of which is connected to its four next neighbors with
springs and dampers. We assume that each spring has a force con-
stant k and has been stretched from a rest length l0 to a length
l1 when tuning the drum. Only the vertical elevation hi of each
mesh element i of the skin is taken into account, because it is more

∗e-mail: izual@fbe.hs-bremen.de
†e-mail:joern.loviscach@hs-bremen.de

prominent around the rest state and it is more effective for sound
radiation. Hence, the spring force onto the ith mesh element is

k
∑

j∈Ni

(

1 − l20/
√

l2
1

+ (hj − hi)2
)

(hj −hi), where Ni is the

4-neighborhood of i. This is nonlinear in hi; a hard drum stroke or
the application of pressure to the skin increase the pitch.

Placing a finger on the drum causes a friction force of a con-

stant times −ḣi. The skin’s intrinsic damping force, which also
helps to stabilize the integration, is modeled by a constant times
∑

j∈Ni

(ḣj − ḣi). We use a leapfrog integration, which is less pre-

cise in the short term than other methods, but does not lose energy
in the long term, so that sounds that take several seconds to decay
can be modeled reliably.

Each simulation step is accomplished through one render call. For

sound output, the value of the central ḣi is used. To optimize the
communication with the CPU, 256 render calls are issued before the
data is read back from the GPU. One audio sample results from each
of these render calls; each sample is written to a different texel of an
off-screen texture. We create two textures, each with four channels
of 32-bit floating point numbers. One texture is used for reading,
the other for writing; their roles are exchanged after each simula-
tion step. The texture channels store the heights, the velocities, the
audio samples computed so far, and—as sign and magnitude within
one channel—the applied pressure and the binary mask of the rim’s
shape. Each time the data is read from the GPU, the height field is
also displayed as a red/green pattern. If the user hits a drum pad, an
appropriately placed soft disk is rendered into the height channel of
the texture. This render command is issued immediately after the
render command for the current audio sample; the system does not
wait for the current chunk of 256 samples to finish.

The touch panel to control the rim’s shape is connected as a sec-
ond display. The audio output is realized through an low-latency
ASIO audio interface as used for professional music making. The
prototype software has been built in C# and HLSL.

3 Results and Outlook

On a PC equipped with a 2.4 GHz dual-core processor (AMD
Athlon 64 X2 4600+) and an Nvidia GeForce 8800 GTS, the pro-
totype software can sustain a sampling rate of 22,050 Hz with a
block size of 12 ms. The sound can be varied among kettledrum,
metal box and unheard-of percussive noises. Future work may look
into proprietary GPGPU support such as AMD CTM and Nvidia
CUDA. To increase the accuracy, one may use a triangular mesh
and model the resonance body of a closed drum.

References

JONES, R., AND SCHLOSS, A. 2007. Controlling a physical model
with a 2D force matrix. In Proc. of NIME ’07, 27–30.

MURPHY, D., KELLONIEMI, A., MULLEN, J., AND SHELLEY,
S. 2007. Acoustic modeling using the digital waveguide mesh.
IEEE Signal Processing Magazine 24, 2, 55–66.

RAGHUVANSHI, N., AND LIN, M. C. 2006. Interactive sound
synthesis for large scale environments. In Proc. of I3D ’06, 101–
108.


