AUDTO Audio Engineering Society

g Convention Paper

® Presented at the 131st Convention
2011 October 20-23 New York, USA

The papers at this Convention have been selected on the basis of a submitted abstract and extended precis that have
been peer reviewed by at least two qualified anonymous reviewers. This convention paper has been reproduced from
the author’s advance manuscript, without editing, corrections, or consideration by the Review Board. The AES takes
no responsibility for the contents. Additional papers may be obtained by sending request and remittance to Audio
Engineering Society, 60 East 42"d Street, New York, New York 10165-2520, USA; also see www.aes.org. All rights
reserved. Reproduction of this paper, or any portion thereof, is not permitted without direct permission from the
Journal of the Audio Engineering Society.

Ray-traced Graphical User Interfaces
for Audio Effect Plug-ins

Benjamin Doursout!, and Jérn Loviscach?
YESIEA - Ecole supérieure d’informatique, électronique, automatique, 53000 Laval, France
2 Fachhochschule Bielefeld (University of Applied Sciences), 33602 Bielefeld, Germany

Correspondence should be addressed to Jorn Loviscach (joern.loviscach@fh-bielefeld.de)

ABSTRACT

On the computer, effects and software-based music synthesizers are often represented using graphical inter-
faces that mimic analog equipment almost photorealistically. These representations are, however, limited to
a fixed perspective and do not include more advanced visual effects such as polished chrome. Leveraging the
flexibility of the audio plug-in programming interface, we have created software that equips a broad class of
synthesis and effect plug-ins with interactive, ray-traced 3D replicas of their user interface. These 3D models
are built automatically through an automated analysis of each plug-ins’ standard 2D interface. Our exper-
iments show that interactive frame rates can be achieved even with low-end graphics cards. The methods
presented may also be used for an automatic analysis of settings and for realistic interactive simulations in
the design phase of hardware controls.

1. INTRODUCTION games and virtual reality applications, ray-tracing

The graphical user interfaces of most current audio
software provide graphical representations of hard-
ware controls. This work looks into a method to fur-
ther improve visual realism: rendering 3D models of
control panels through a ray-tracer that operates at
interactive speed thanks to the computational power
of today’s graphics cards. As opposed to standard
z-buffer rasterization as used in almost all computer

enables displaying resplendent control surfaces made
of shiny materials, which are typical for high-end au-
dio equipment.

The method may be used for actual man-machine
interaction in the digital studio. It may also be help-
ful for the design of interactive virtual prototypes of
audio equipment and music synthesizers such as [4].

Doursout AND Loviscach

Ray-traced GUIs

We apply image processing to build 3D models of the
user interfaces of existing plug-ins. This approach
may also be applicable to other problems of auto-
mated analysis of plug-ins, for instance for testing
purposes during software development.

This paper is structured as follows: Section 2 ex-
plains the wrapper solution to extend a given stan-
dard plug-in. Section 3 introduces the image analy-
sis of the plug-in’s standard user interface. The re-
sults of this analysis are used to create a 3D model,
as described in Section 4, which is rendered through
ray-tracing, see Section 5. Section 6 covers the user’s
interaction with the ray-traced interface; Section 7
presents a number of results; and Section 8 provides
ideas for future extensions and applications.

2. PLUG-IN WRAPPER

To support a broad variety of existing plug-ins and of
existing digital audio workstation software, we have
developed a wrapper, see Fig. 1, that

e masquerades as a host application to a plug-in,

e masquerades as a plug-in to the host, i.e., the
digital audio workstation (DAW),

e employs the Internet protocol (TCP/IP) to
communicate with the novel user interface and
initially also with the software used for image
processing.

The application programming interface (API) sup-
ported for the plug-on and the host is VST 2.4 [2].
The communication via TCP/IP enables receiving
data from and sending data to any other process
running on the same computer—or even running on
a different computer, so that one may even compute
the visuals on a remote computer. The data are
packed into a proprietary UDP datagram format.

On startup, the wrapper presents a dialog to select
the plug-in that it should be wrapping. This is the
only time the user makes contact with the wrap-
per. When running, the wrapper lets the messages
from the host pass through to the plug-in and vice
versa. The wrapper recognizes parameter change
commands from either side—that is, the user inter-
face of the plug-in as well as automation from the
host—and transmits them as UDP datagrams to at-
tached software. In addition, the wrapper listens for

Host (DAW)
Wrapper
Plug-in
Function Calls
-
L

Image Ray-traced
Processing User Interface
Software

<UDP Datagrams

Fig. 1: The wrapper eavesdrops on messages sent as
function calls from the host to the plug-in and vice
versa. In addition, it uses the Internet protocol to
communicate with software external to the process
of the host.

incoming UDP datagrams with parameter changes,
adjusts the plug-in and informs the host accordingly.

On startup, the wrapper calls the VST API to de-
termine the total number, the names and the initial
values of the plug-in’s parameters. These are trans-
mitted as UDP datagrams. In addition, the wrapper
retrieves and transmits the location and size of the
plug-in’s editor window. These data about the win-
dow are used to direct the image processing.

3. IMAGE PROCESSING

Before building an interactive 3D model, the system
has to learn which type of control (knob, horizontal
fader, etc.) is to be used for each parameter, where
the control is located on the screen, what its size is, if
the parameter is continuous (such as a level setting)
or if it is discrete (such as a waveform selector), and
what the number of possible values is for a discrete
parameter. Some of these data, such as the number
of steps, could in principle be obtained by calls to
the VST API. We found, however, that many exist-
ing plug-ins do not provide correct answers to such
requests. Hence, we decided to collect all of these
data from the actual graphics of the user interface.

In the prototype, the analysis phase is currently im-
plemented as a MATLAB® script that communi-

AES 131t Convention, New York, USA, 2011 October 20-23
Page 2 of 8

Doursout AND Loviscach

Ray-traced GUIs

Feedback

4 3 & »..

\

Width ; Feedhacc

v
\
Width

Fig. 2: The plug-in’s standard graphical user in-
terface (top; phaser effect from [12]) is checked for
autonomous changes to create a mask (second row)
of pixels to be ignored during the further analysis.
As each parameter is changed, the maximum (third
row) and the minimum (fourth row) RGB value per
pixel are obtained. The difference image of these
(last row) indicates the size and the shape of the
control.

cates with the wrapper holding the plug-in. The
script uses UDP datagrams to fetch the number of
parameters and the size as well as the location of the
2D user interface from the wrapper. It then applies
image processing to this area of the screen.

Initially, the script takes a series of screenshots to
learn if some parts of the standard interface—such
as a blinking indicator light—change autonomously,
with no parameter changes being applied. The pixels
identified here are masked out in the further process,
see Fig. 2.

Then, one parameter after another is adjusted from
0.0 to 1.0 in 21 steps. The script counts how many
of these steps lead to a different image on the screen
and thus can determine whether the parameter at
hand should be treated as continuous or as discrete,
and, if the latter is the case, how many steps it has—
unless that number is of the order of 20 or more.

In addition, the script determines the per-pixel-
maximum and the per-pixel-minimum of the screen
shots taken for a single parameter. The difference of
the per-pixel-maximum and the per-pixel-maximum
per parameter shows which screen area is affected,
see the bottom row of Fig. 2. The centroid of this
difference image is taken as the geometric center of
the control; the standard deviations in the horizontal
and the vertical directions are taken as dimensions
of the control.

If the standard deviation in the horizontal direction
is larger than 1.5 times the standard deviation in
the vertical direction, the control is identified as—
depending on the number of value steps—a hori-
zontal fader or a horizontal slide switch; similarly
for vertical faders and vertical slide switches. In
all other cases, the standard deviation in horizon-
tal direction does not differ much from the standard
deviation in vertical direction so that the control is
classified as a rotary knob or a pushbutton.

The script saves the data on the controls in a struc-
tured text file named similar to the plug-in’s exe-
cutable file. This text file is placed in a central di-
rectory so that the analysis needs only be executed
once; its results can be retrieved easily by other soft-
ware.

4. BUILDING THE 3D MODEL

The ray-tracer requires a three-dimensional model
of the interface. Each time the 3D user interface is
started, this model is built from the data stored in
the file generated for the specific plug-in during the
analysis phase. Knobs, sliders, etc. are placed at the
locations and with the dimensions determined in the
analysis phase.

For each label, single letters from a map are assem-
bled into a bitmap texture that contains the name
of the parameter, see Fig. 3. (The characters are
blurred to serve as a bump map, see Section 5.) The
varying width of the letters is obtained from the op-
erating system. The labels are generated at a fixed
height and hence at a fixed font size unless they col-
lide with neighboring elements, in which case their
size is reduced.

The placement of the labels is not known from the
analysis phase. Hence, we have to resort to auto-
matic layout. In principle, each control’s label could

AES 131t Convention, New York, USA, 2011 October 20-23
Page 3 of 8

Doursout AND Loviscach

Ray-traced GUlIs

$
3
B
Q

o> N #

.

>O@v—t
c-mccnsa"

Elements

—— 7 0 O =
3 mOS X

3
3
>

Fig. 3: An image file that contains slightly blurred
characters of a given font is prepared upfront (top
left). During the startup of the 3D user interface,
a texture is built for each parameter’s name (top
right). During rendering, this texture is used both
for coloring and bump-mapping (bottom).

be placed below the control at a fixed multiple of the
control’s height. However, this solution may inter-
fere with other controls that are located below the
current control. Hence, the automatic layout first
looks for controls that are located below the current
control, for which it takes the widths of the controls
into account. If there are such controls, the label
is placed between the bottom of the current control
and the top of the closest control below.

5. RAY-TRACING

The interactive ray tracer is a C++ program built
on Nvidia OptiX 2.1.0 [5, 6]. Like a standard ray-
tracer [9], the OptiX framework fires rays through
each pixel in the image to be created; the intersec-
tions of these rays with objects of the scene and the
generation of secondary rays for reflections and shad-
ows are handled through scene-specific programs
provided by the application programmer. The ex-
clusive feature of OptiX is that these programs are
provided as CUDA code [7]. This code is executed
with an extreme degree of parallelism on the graph-
ics processor. Note that graphics processors regu-
larly use a different approach for image synthesis:

Fig. 4: Bump mapping (top: off, bottom: on) is
used to inexpensively create plausible dents and hol-
lows (see arrows).

rasterization of triangles into a color-buffer and a
z-buffer [8].

The CUDA intersection programs we use for the
3D interface do not employ any triangle meshes,
in stark contrast to typical 3D rendering as done
in video games. Rather, the surfaces of all objects
are defined through analytic equations that deter-
mine where viewing rays intersect with objects and
what the slope (technically: the normal vector) of
the surface is at such a point. This solution speeds
up the computation, particularly because it requires
far fewer data to be fetched from memory; in addi-
tion, it guarantees perfectly smooth rounding.

The base shapes are frusta cut from cones or from
pyramids. As these shapes look artificially clean, we
decided to create bump maps [1] to simulate dents
and hollows with little impact to the performance.
This concerns for instance the caps and the sides of
the knobs as well as the panel on which they seem

AES 1315t Convention, New York, USA, 2011 October 20-23
Page 4 of 8

Doursout AND Loviscach

Ray-traced GUIs

Fig. 5: The identification map quickly answers the
question which control is visible at a given pixel of
the screen.

to be mounted, see Fig. 4. The labels, too, employ
heavy bump-mapping in addition to their dark color
so as to appear engraved.

The look of polished chrome requires a colorful envi-
ronment that is mirrored by the shiny surfaces. To
this end, we apply a standard trick from computer
graphics: The 3D scene is placed at the center of
an infinitely large sphere which is covered from the
inside by an 360° panoramic photo, which hence be-
comes an “environment map”.

6. INTERACTION

The ray-traced 3D interface requires a navigation
that is different from a regular 2D window: Whereas
a 2D window’s content can only be scrolled horizon-
tally or vertically, the 3D scene allows placing the
camera freely, which can be described by the posi-
tion of the camera (three coordinates) and its orien-
tation (three angles). We employ a standard game-
like interaction with the camera with pan/tilt, strafe
(move sideways), and dolly (move closer or away).

To operate one of the controls, the user moves the
mouse over the control on the rendering and turns
the scroll wheel of the mouse. The corresponding
changes are transmitted to the VST wrapper. The
other way around, parameter changes sent from the
VST wrapper update the 3D scene.

An identification map is employed to determine
above which control the mouse pointer is currently
hovering. This map is updated every time the user

Mode Modulation tate Delay. Direction Range
il ¥ ¥

v
Siza Feedback Width Diffuse Diraction Spread Distribution Lowspass

-

Low FREQUENCY
16

20

Fig. 6: Plug-ins by Xhip [12] and Nubi3 [10] served
as test cases for the following screenshots.

releases the mouse button after adjusting the cam-
era. Then, the ray-tracer computes an image of the
scene in which each object is colored with an individ-
ual color, see Fig. 5. This image is stored in memory
but never displayed. Rather, the single pixel of this
image that corresponds to the mouse cursor’s po-
sition is retrieved to check whether or not there is
a control at this point and, if so, what its number
is. As a visual feedback, a small sphere is displayed
above the control.

7. RESULTS

For typical VST plug-ins such as the two plug-
ins shown in Fig. 6, the system achieves interac-
tive frame rates of five to ten frames per second
at 1280 x 720 pixels already with a low-end graph-
ics card priced at US$ 80 and based on the Nvidia
GeForce GT430 chip, see Fig. 7. The frame rate is
approximately inversely proportional to the number
of pixels on the screen. Through ray tracing, the
quality of the reflections is clearly superior to ras-
terization rendering with environment maps: Reg-
ular environment maps as used in rasterization do
not show local objects correctly and do not support
interreflections.

AES 131t Convention, New York, USA, 2011 October 20-23
Page 5 of 8

Doursout AND Loviscach

Ray-traced GUlIs

Fig. 7: Interactive frame rates can be achieved even
on a low-end graphics card. The actual frame rate
depends on the amount of reflection visible in the
image.

For beauty shots, the ray tracer employs antialias-
ing and depth-of-field blur with continuous accumu-
lation as already implemented in the OptiX SDK'’s
examples, see Figs. 8 and 9. The point above with
the mouse is currently hovering is taken as the focal
point for depth-of-field blur. Such high-quality im-
ages require accumulation over a few seconds; they
may be helpful in the design and marketing of hard-
ware at a point of time at which it only exists as a
software simulation.

8. OUTLOOK

The presented solution can be extended in a straight-
forward manner to stereoscopic viewing. How-
ever, most current stereoscopic displays (colloquially
termed “3D” displays) require the user to wear spe-
cial glasses. This may not be acceptable in the audio
studio. Likewise, head-mounted displays as used for
immersion into virtual reality can be ruled out for

applications in the audio studio. Such displays may,
however, prove beneficial for applications in the de-
sign of audio equipment.

The fully automated generation of the 3D model
does not lead to satisfactory results with all plug-
ins. Uncommon controls are hard to map automat-
ically. For instance, the graphical user interfaces of
some plug-ins contain dots inside rectangular areas
to control two parameters with one handle. In addi-
tion, many software synthesizer plug-ins provide on-
screen keyboards, which—mnot corresponding to VST
parameters—Ilead to corresponding empty areas on
the panel of the 3D model. An editor could help re-
organizing the controls found in the automated anal-
ysis. For use in product design, the editor may even
provide a set of building blocks to create 3D models
from scratch.

A deep and general question to ask is whether photo-
realistic user interfaces are beneficial, and—if so—
why and how. The interference of visual informa-
tion and other knowledge with auditory perception
is well known to sound engineers. James Johnston
reported [11] about an informal experiment in which
he pretended to switch between a shiny high-end
tube amp and a cheap transistor amplifier; test per-
sons claimed to hear a difference—even though the
switch was not connected to anything.

Aesthetics have a known halo effect onto how cus-
tomers perceive other attributes of a product. The
interplay between aesthetic qualities and traditional
concepts of usability is still under debate. Graph-
ical metaphors may be preferred even though their
usability is poorer both objectively and in the users’
perception [3]. This phenomenon seems to be preva-
lent in today’s audio software; much research may
still be required to find the optimal balance be-
tween aesthetics and purely operational aspects.
The method presented can offer an inexpensive way
to test aspects of this halo effect.

9. REFERENCES

[1] J. F. Blinn. Simulation of wrinkled surfaces.
SIGGRAPH Comput. Graph., 12:286-292, Au-
gust 1978.

[2] R. Boulanger and V. Lazzarini. The Audio Pro-
gramming Book. The MIT Press, 2010.

AES 1315t Convention, New York, USA, 2011 October 20-23
Page 6 of 8

Doursout AND Loviscach

Ray-traced GUlIs

Fig. 8: By accumulating frames over several seconds, the system can produce beauty shots with high-quality
antialiasing sufficient for product brochures.

8]

J. Hartmann, A. Sutcliffe, and A. D. An-
geli. Towards a theory of user judgment of
aesthetics and user interface quality. ACM
Trans. Comput.-Hum. Interact., 15:15:1-15:30,
December 2008.

M. Irmer. Tyrell: a synth designed by
readers. http://www.amazona.de/index.php?
page=26&file=2&article_id=3191, last vis-
ited 2011-07-24.

Nvidia. Developer zone: Optix. http:
//developer.nvidia.com/optix, last visited
2011-07-24.

S. G. Parker, J. Bigler, A. Dietrich,
H. Friedrich, J. Hoberock, D. Luebke, D. McAl-
lister, M. McGuire, K. Morley, A. Robison, and
M. Stich. Optix: a general purpose ray tracing
engine. ACM Trans. Graph., 29:66:1-66:13,
July 2010.

J. Sanders and E. Kandrot. CUDA by Exam-
ple: An Introduction to General-Purpose GPU

Programming. Addison-Wesley Professional,
Boston, MA, USA, 1st edition, 2010.

P. Shirley and S. Marschner. Fundamentals of
Computer Graphics. A. K. Peters, Ltd., Natick,
MA, USA, 20009.

K. Suffern. Ray Tracing from the Ground Up.
A. K. Peters, Ltd., Natick, MA, USA, 2007.

VST Planet. Spinner LE. http:
//www.vstplanet.com/VST_effects/
Modulation/SpinnerLE.d11, last visited

2011-07-24.

E. Winer. Audio myths—defining what affects
audio representation. Workshop at the 127th
Convention of the AES, 2009.

Xhip. Xhip Effects release 2. http://xhip.
presetexchange.com/effects/, last visited
2011-05-28.

AES 131%t Convention, New York, USA, 2011 October 20-23
Page 7 of 8

Doursout AND Loviscach Ray-traced GUlIs

Fig. 9: Another use of the accumulation buffer is to create a depth-of-field blur effect that guides the view
to the control that is currently active.

AES 131%t Convention, New York, USA, 2011 October 20-23
Page 8 of 8

