
This is the authors' accepted version of the paper:
Real-Time Lettering on 3D Signs with a 2D Font Engine
Sebastian Heise and Jörn Loviscach
Eurographics 2007 Short Papers and Medical Prize Awards, pp. 89-92

The definitive version is available at diglib.eg.org.



EUROGRAPHICS 2007 / P. Cignoni and J. Sochor Short Papers

Real-Time Lettering on 3D Signs with a 2D Font Engine

S. Heise1 and J. Loviscach2

1Fachbereich 03: Mathematik/Informatik, Universität Bremen, Germany
2Fachbereich Elektrotechnik und Informatik, Hochschule Bremen, Germany

Abstract
Standard texturing shows a number of problems with 3D objects such as road signs, labels, or books. If letters
are displayed at too large a scale, textures show blurred instead of hard edges; if letters are displayed at tiny
sizes, textures appear either too pixelated or too blurry, but seldom well readable. In 2D as opposed to 3D, letters
are created on demand in the required size by a sophisticated font rendering engine, a standard component of
today’s operating systems. A number of specific improvements such as hinting and RGB subpixel rendering are
available. This paper demonstrates how these partially proprietary and patented 2D functions can be leveraged
for 3D rendering. The price to pay is a loss in geometric precision, since typical 2D font rendering engines only
handle affine transformations, which can merely approximate perspective projection. However, in most situations
this is outweighed easily by the gain in clarity.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation

1. Introduction

Graphics programming interfaces such as Adobe PostScript,
Microsoft GDI+, and Sun Java2D do not only offer to draw
letters in an upright position at arbitrary size: They also al-
low setting an affine 2D mapping to which the typeface char-
acters are subjected. The basic idea proposed in this work
is to use this affine mapping to approximate the transfor-
mation needed to display letters in 3D. Since this trans-
formation usually involves linear perspective, there will be
some amount of geometrical error. However, this error can
be kept imperceptibly low in situations where readability
is the issue: In such situations, characters appear at small
sizes, so that a local approximation through an affine map-
ping works well, see Figure 1. In contrast to state-of-the-art
GPU-based typeface rendering methods such as [QMK06],
the presented method needs no special preprocessing and in-
herits complex techniques from the font engine, in partic-
ular hinting and RGB subpixel rendering (also known as
Microsoft ClearType). As our experiments showed, in Mi-
crosoft’s GDI+ both of these techniques also work with char-
acters subjected to an affine mapping.

Road signs and similar items are of eminent interest in
professional virtual reality applications such as driver train-
ing. Thus, we focus on planar objects. A standardized de-
scription is used to store the typographic data concerning

which characters to place where on these objects. As a side-
effect, storing not a texture image but an actual character
string facilitates replacing the text, for instance for interna-
tionalized versions, for thousands of street names, or to cre-
ate a 3D newspaper with daily news from the Web.

The 3D data of the camera, the 3D data of the text’s
ground plus the 2D data of the characters’ locations are
used to compute an optimal affine mapping for each char-
acter. The 2D font engine renders the text description into
an offscreen bitmap, using these mappings for the charac-
ters. The offscreen bitmap is used as a texture, which is
mapped onto the text’s ground, precise to the pixel. This is
easy because the screen coordinates, which are available in
the pixel shader, act as texture coordinates. The method can
be combined effortlessly with effects such as illumination,
other textures, bump mapping, shadow generation.

This work is structured as follows: Section 2 summarizes
related work and Section 3 introduces the different steps of
our method. Section 4 details the per-character approxima-
tion of the perspective transform through an affine mapping,
whereas Section 5 gives a criterion for when a single affine
mapping suffices for a complete text string. Section 6 de-
scribes the 3D rendering and Section 7 reports our findings
in benchmark tests. Section 8 concludes this paper.

c© The Eurographics Association 2007.



S. Heise & J. Loviscach / Lettering on 3D Signs

Figure 1: Compared to a standard MIP-mapped texture (up-
per lines), a 2D font engine delivers highly readable text
even at tiny sizes (middle lines: pixelated, lower lines: with
font antialiasing). This image uses large pixels deliberately
to show the effect. ClearType, the best method, cannot be
shown in this grayscale print.

2. Related work

Well-readable font rendering on computer screens has been
researched into for decades and is considered a standard fea-
ture in GUI-based operating systems. As opposed to vec-
tor graphics, standard typefaces are equipped with “hints” to
preserve line widths and other characteristics even when the
letters are only a handful of pixels high [Her93].

On most desktop computer systems, antialiasing is used
by default. Whereas the characters’ shapes look smoother,
their readability tends to suffer, however, and only Mi-
crosoft’s antialiasing method ClearType seems to achieve the
readability of pixelated fonts [GTAE04]. ClearType employs
the RGB subpixel patterns of today’s standard displays to
enhance the spatial resolution [BBD∗00].

In standard 3D graphics, letters are treated like texture im-
ages, which leads to an omnipresent excessive blurring and
on magnification also causes jaggies. In recent years, sev-
eral works have proposed techniques to create vector graph-
ics shapes on the GPU [LB05, KSST06, QMK06] or to im-
prove the magnification of textures that contain hard-edged
shapes [TC04, Sen04, RBW04, TC05, Lov06]. All of these
methods are based on not storing standard images in the tex-
ture, but augmenting or even replacing an image by data that
can be used efficiently to create lines or curved shapes. If
addressed, strong minification is handled through standard
MIP mapping. Thus, the work presented here is largely com-
plementary to previous work on typeface rendering in 3D.

3. Overall strategy

From the magnitude of perspective distortion (for which we
give an estimate), we can decide whether a sign’s text can
be rendered as one string with a single affine mapping or
whether it is necessary to apply a different affine mapping
for each character. In the latter case, we need the exact posi-
tions of all characters. These are determined on startup as
floating-point numbers; kerning information, if present in
the font, is included in the positions.

Every sign contains its own bitmap where it creates its
pixel image using the affine approximation in 2D. During 3D
rendering, the content of this bitmap is copied into a screen-
sized texture, which is used for the shader. This texture is
created once on startup and is then used for all signs. To ac-
celerate the copy operations, only the content of each sign’s
bounding box is transferred.

4. Local affine approximation

We want to determine the best affine mapping around the
point (x0,y0), which is the geometric center of a character
on a sign’s 2D drawing surface. Let M be a 4× 4 matrix in
homogeneous coordinates that describes the complete trans-
formation from the 2D coordinates (x,y,0,1)T on the letter’s
planar background to the normalized 3D viewing volume.
The matrix M can be decomposed as

M =


a11 a12 · b1
a21 a22 · b2
· · · ·

c1 c2 · d

 ,

where A is a 2× 2 matrix, b and c are 2D vectors, and d is
a real number. The third row and the third column are not
relevant for the considerations that are to follow.

A 2D point (x,y) will be mapped to the normalized screen
space coordinates

A
(

x
y

)
+b

c ·
(

x
y

)
+d

.

The best local approximation at (x0,y0) through an affine
mapping can be found by forming the derivative: A point
(x,y) close to (x0,y0) will be mapped approximately to

A
(

x0
y0

)
+b

w0
+

A
(

x− x0
y− y0

)
w0

−
A

(
x0
y0

)
+b

w0
·

c ·
(

x− x0
y− y0

)
w0

,

where w0 = c ·
(

x0
y0

)
+d.

This is the affine mapping set in the 2D engine, up to two
minor changes: The y direction has to be inverted as it points
downward in 2D; the output coordinates are normalized and

c© The Eurographics Association 2007.



S. Heise & J. Loviscach / Lettering on 3D Signs

have to be scaled and offset from their range [−1,1] to the
actual range [0,screen width−1] and [0,screen height−1].

5. Uniform affine approximation

In situations of little perspective distortion, it is sufficient to
apply a uniform affine mapping to the complete text, see Fig-
ure 2. This saves the time to compute and set the best map-
ping per character. To conform best to the correct shape of
the text’s bounding box, we do no longer use the derivative
of the perspective transformation to form the affine mapping.
Rather, we compute the centers of the bounding box’s edges
on the screen and create an affine mapping that maps the
centers of the edges of the 2D bounding box to these points.

Figure 2: Choosing the best matrix per character allows to
handle perspective (top). The quicker solution is to use one
affine mapping for all of the text. This will introduce a larger
error, however.

A criterion is required to decide when the distortion is low
enough to allow using only a single affine mapping. To this
end, we seek an estimate of the error introduced by an over-
all affine mapping as opposed to a per-character affine map-
ping. An estimate that can evaluated quickly is the second-
order term of the Taylor expansion around the type’s center
(x0,y0) = (0,0):

d−3 b
(

c ·
(

x
y

))2

−d−2 A
(

x
y

)
c ·

(
x
y

)
.

This is multiplied with the screen size; (x,y) is set to four
points on the letters’ bounding rectangle (top left, top mid,
top right, mid right, to have four different directions). From
this we get an estimated maximum error, measured in pix-
els. One can introduce a threshold for this value. When this
is surpassed, optimal mappings should be determined on a
character-by-character basis.

6. 3D rendering

Once the sign’s pixels have been copied to a GPU texture,
they have to rendered one-by-one into screen pixels. To this

Visible Pixels (average) Frames per Second
75,000 330
150,000 200
300,000 150

Table 1: For the benchmarks we used an animation contain-
ing twelve signs with ClearType.

end, we employ the screen coordinates available from the
position register introduced with Shader Model 3.0. There
are no MIP levels, and the texture fetches use the quick
nearest-neighbor sampling. For a further increase in speed,
the colors could be stored as 8-bit gray scale instead of 24-bit
RGB values if one does not apply ClearType.

Even though we employ an unusual texture mapping, each
sign’s area is rendered as a 3D rectangle at its regular posi-
tion. Thus, that there are no issues with falsely hidden or
non-hidden surfaces. The colors of the typeface characters
may be used like those of any regular texture: They may be
combined with lighting, shadows, etc.

7. Results

A software prototype has been created in Microsoft XNA
Game Studio, employing the languages C# and HLSL.
Benchmarks were done on a 1800-GHz dual-core notebook
computer equipped with an Nvidia 7400 GPU and running
Microsoft Windows Vista. As the data show, rendering small
signs with this method is a viable option, see Table 1.

Concerning the readability, the presented method eas-
ily outperforms standard texture mapping. The difference
in quality is particularly high for small characters under
oblique view, where a high degree of anisotropic sampling
would be needed for standard textures. During our experi-
ments, the lack of perspective distortion turned out to be only
noticeable to the unwitting viewer if the fonts are viewed at
large sizes under highly oblique angles, see Figure 3. This
is no typical viewing condition for road signs or cockpit in-
struments and can thus be tolerated.

Using the 2D font engine for letters several tens of pix-
els large turned out to be not advisable due to two reasons:
First, large letters often appear with a strong perspective dis-
tortion; second, the time to create these characters in the font
engine and to transfer the large numbers of pixels to the
graphics card lets this method become prohibitively slow.
Thus, for large letters, standard textures or one of the GPU-
based methods specialized on vector shapes should be used.

The switching from our method to such a method can hap-
pen through blending, so that for a certain range of sizes both
methods will be used in parallel. Whereas we implemented
blending our method to a standard texture for large sizes, we
learned that this may actually not be necessary: Using the
per-character affine approximation, the shapes of the letters

c© The Eurographics Association 2007.



S. Heise & J. Loviscach / Lettering on 3D Signs

Figure 3: There has to be considerable geometric
mismatch—as visible from the gray bounding boxes of the
characters—, before the per-character affine mapping pro-
duces odd-looking results.

are matched so well that one can simply switch to the texture,
without any intermediate range of blending, see Figure 4 and
the accompanying video.

Figure 4: To smoothen out the transition to texture-based
fonts for large sizes, one may blend the texture with the result
of our method over an intermediate size range. The result of
the per-character approximation is so precise that blending
it with the corresponding standard texture introduces only
tiny changes (top). The approximation with a singe affine
mapping (bottom) does not lend itself to such an approach.

8. Conclusion and outlook

We have presented a method to produce clear lettering in 3D
applications through leveraging a standard 2D font engine.
It works particularly well for small font sizes.

The method can be extended to curved surfaces by taking
the local tangent plane of each character into account. As
opposed to the planar case, it may happen that some of the

characters are hidden due to the curvature. At least for letter-
ing on convex objects, this can be dealt with completely by
per-character backface culling.

Since 2D graphics engines offer a host of high-quality an-
tialiased drawing functions, it may make sense to also cre-
ate vectors graphics similarly to the proposed font render-
ing. However, the elements of such a drawing may be very
large and thus easily reveal the lack of perspective distortion.
One option to overcome this problem is to adjust each Bézier
path’s anchor points instead of applying an affine mapping.

References

[BBD∗00] BETRISEY C., BLINN J. F., DRESEVIC B.,
HILL B., HITCHCOCK G., KEELY B., MITCHELL D. P.,
PLATT J. C., WHITTED T.: Displaced filtering for pat-
terned displays. In SID Digest. 2000, pp. 296–299.

[GTAE04] GUGERTY L., TYRRELL R. A., ATEN T. R.,
EDMONDS K. A.: The effects of subpixel addressing
on users’ performance and preferences during reading-
related tasks. ACM Transactions on Applied Perception
1, 2 (2004), 81–101.

[Her93] HERSCH R. D.: Font rasterization: the state of the
art. In Visual and Technical Aspects of Type, Hersch R. D.,
(Ed.). Cambridge University Press, 1993, pp. 78–109.

[KSST06] KOKOJIMA Y., SUGITA K., SAITO T., TAKE-
MOTO T.: Resolution independent rendering of de-
formable vector objects using graphics hardware. SIG-
GRAPH 2006 Sketches, 2006.

[LB05] LOOP C., BLINN J.: Resolution independent
curve rendering using programmable graphics hardware.
ACM TOG 4, 3 (2005), 1000–1009.

[Lov06] LOVISCACH J.: Rendering road signs sharply.
In Game Programming Gems 6, Dickheiser M., (Ed.).
Charles River Media, Boston, 2006, pp. 501–516.

[QMK06] QIN Z., MCCOOL M. D., KAPLAN C. S.:
Real-time texture-mapped vector glyphs. In Proc. of I3D
2006 (2006), pp. 125–132.

[RBW04] RAMANARAYANAN G., BALA K., WALTER

B.: Feature-based textures. In Eurographics Symposium
on Rendering 2004 (2004), pp. 265–274.

[Sen04] SEN P.: Silhouette maps for improved texture
magnification. In SIGGRAPH/Eurographics Conference
on Graphics Hardware 2004 (2004), pp. 65–73.

[TC04] TUMBLIN J., CHOUDHURY P.: Bixels: Picture
samples with sharp embedded boundaries. In Eurograph-
ics Symposium on Rendering 2004 (2004), pp. 255–264.

[TC05] TURINI M., CIGNONI P.: Pinchmaps: Textures
with customizable discontinuties. Computer Graphics Fo-
rum 24, 3 (2005), 557–568.

c© The Eurographics Association 2007.


