Paving Procedural Roads with Pixel Shaders

Jörn Loviscach Hochschule Bremen Bremen, Germany

Outline

- Polygonal roads vs. procedural roads
- Implicit fat curves
- Cookie-cutting
- Performance, strengths, weaknesses
- Conclusion, outlook

- •VR driver training, 3D games: lots of roads
- Polygons tend to show in boundaries and textures of roads
- Smooth-looking polygonal roads demand level-of-detail management

Procedurally-built roads

- are by themselves pixel-precise
- minimize data storage and transfer (high-level geometry; no LoD datasets)

Do that completely on the GPU!

Process:

- Read the median as a list of points and tangent directions
- •Form the road from tangent continuous segments
- •For every segment construct an oversized quadrangle
- Discard off-road pixels in pixel shader

Demo 🔍

Implicit Fat Curves

Implicit Fat Curves

How to create a segment of the road?

- Model the median as a cubic function.
- •Create the full width of the road analogously to offset curves. v = 0.2

Curve is *not* computed explicitely: Given (x,y) find (u,v).

Implicit Fat Curves

Exact solution not feasible. Approximate solution (see paper):

- only solve a quadratic equation
- boundary conditions (positions, tangents) precisely met

Cookie-Cutting

Cookie-Cutting

Initialization:

- •Build oversized quadrangles (see demo)
- Equip all four vertices of a single quadrangle with 2D coordinates etc.

Rendering:

- Evaluate the implicit fat curve in the pixel shader
- •Discard off-road pixels (HLSL: clip, DX Assembler: texkill)
- Retrieve texture color

Cookie-Cutting

T-junctions:

- No missing pixels with Nvidia hardware; elsewhere use tiny overlap
- Cannot be abandoned easily: Vertices have to be equipped with values of local coordinates
- •Help to minimize rendered area

Performance, Strengths, Weaknesses

Performance, Strengths, Weaknesses

- small scene of ~100 segments: three times slower than high-resolution polygonal geometry (~5000 tris)
- break-even with hi-res polys at ~350k tris
- break-even with mid-res polys at ~2M tris

Performance, Strengths, Weaknesses

Strengths:

- Pixel-scale precision without LoD
- Amount of data strongly reduced

Weaknesses:

- Roads over hills and through valleys?
- •Curbs? Intersections?

Conclusion, Outlook

Conclusion, Outlook

- Procedural roads can be rendered efficiently by the GPU
- General road layout (intersections etc.): combine procedural geometry and polygons (fully specified behavior at boundary!)
- Generalize to handle some amount of curvature in height, too?
- •Similar method to render tubes using billboards?

Questions?