Wrinkling
Coarse Meshes
on the GPU

Jorn Loviscach

Hochschule Bremen
jlovisca@informatik.hs-bremen.de

Objective

2 of 25

Related Work

Cloth with less than 100% physics:

*Hadap et al., Vis 99: Bump maps
invoked according to deformation

*Cutler et al., SCA 05: Wrinkle curves
applied according to deformation

*Cordier et al., CGF 05:
Learn mesh details from physics

... any many more

3 of 25

Basic Idea

*Per vertex: @ %,
*Determine
geometric compression /\

Compute plane wave ' ‘\’}
*Jteratively align adjacent waves

*Per pixel: blend plane waves;
deform normals and tex coords

4 of 25

Contributions

* Detailed wrinkles
from arbitrary deformations;
fast, robust, controllable,
no precomputation

* Deformation of normals and texture
from dynamic height fields

*Optional 3D paint-mode
for wrinkle density and direction

5 of 25

Outline

*Overview of the method

*Mesh compression and wrinkle height
*Rendering

*Results

*Qutlook

6 of 25

Overview of the Method

Original
Position Skin
Unified
Vertices
Crush

Adjacency

Color
Relax

Profile

LN

M

Triangle

Vertices)" Render

Position

M

_— Normal

d

\

LA

Crush

Phase

P» Screen

Four
rendering
passes

(= pairs of
vertex and
pixel shaders)

7 of 25

Overview of the Method

Original

Position Skin
\/Y
Uniﬂed \
Vertices \ Apply
" Crush deformation,
Aacene—\—" e.g., skinning.
Store new
\ positions and
Color
| normals.
Relax
Profile \
Triangle \

8 of 25

Overview of the Method
Original
Position Skin T} Pnsrtmn
e
Unified \
Vertices

Determine
direction and
strength of
local
compression

9 of 25

Overview of the Method

Original
Position

Align phases
of local plane
waves

10 of 25

Overview of the Method

EDEE Skin T> Position
- \

Normal

Unified
Vertices

Adjacency

Profile

S
N

Triangle
Vertices

Render
to screen

11 of 25

Determining the Compression

For every vertex:

°Linear approx. M of local deformation

*Find direction and amount of strongest
compression: eigenanalysis of M' M

® nheighbor
vertices

vertex

before deformation after deformation

12 of 25

Painting Rest-Pose Wrinkles
Demo
Integrate user-defined wrinkles:

Bias the computation

of the linear approximation M:
M-> M-(1-qUq),

g specifies direction and amount,
is defined by 3D painting GUI.

13 of 25

Converting Compression to Height
Simple straight-line approximation:

compression ratio r
- wrinkle amplitude h

rW Wi2

Real-time control on width W
Demo

14 of 25

Compression Vector Field (1)

Result at every vertex:
*Tangent unit vector

along maximum compression
*Wrinkle amplitude

qf &\
/’54*\2(

Local plane waves in rest—pose space

15 of 25

Compression Vector Field (2)

Use M "to convert

the direction vectors

to wave vectors

in post-deformation space.

- Waves are compressed with the mesh.

16 of 25

Generating the Height Field (1)

Idea:
Blend the linear waves
across every triangle.

N

\\ N
N

Ooops: Waves aren't aligned.

17 of 25

Generating the Height Field (2)

Problem: The phases of the local
plane waves are not yet determined.

Solution: Relax the phases gradually
to diminish local misfit.

CAF~AN
Demo \‘\'\' - \\/

18 of 25

Rendering (1)

Render coarse polygons,
fake fine-scale deformation.

Two issues to address:
* Deform texture
* Adjust normal vector

Demo

19 of 25

Rendering (2)

Texture deformation
similar to Parallax Mapping

A

Height Field
h(x’)

Base Polygon

20 of 25

Rendering (3)

Illumination: Compute normals
of dynamic height field

9 h(mx)
Need the Normal of Height Field
gradient of h. n’

ﬁ{x'}\

X Height Field

Ground Plane

21 of 25

Rendering (4)

Wrinkle profile determined by:
*height: cosine
*gradient: —sine

Replace each
with a 1D texture lookup:

arbitrary profiles

Demo

22 of 25

Results

Name # Vertices | # Pixels (average) | 1ps
Shirt 455 ~330.000 | 328 /#F One
Zeppelin 508 ~260.000 | 5 pixel
Curtain 92 ~ 505.000 per
vertex

Stage # Shader instructions tribution

Vertex Pixel A B
Skin 13M + 20 2 06 ms | 0.25 ms
Crush 8§ | 28N+ 1024 0.08 ms | 1.83 ms
Relax 7 33N+23 | 0.1l ms | 1.75 ms
Render 67 47 | 3.11ms | 5.01 ms
Total time incl. non-shader part 3.45ms | 8.90 ms

M = #bones used per vertex; N = #neighbors

A: 1 Mpix, 100 verts; B: 55 kPix, 50 kVerts

23 of 25

Outlook

*Create curvature-aligned hatching
with analytical filtering Demo

*Fewer pseudo-textures with D3D 10:
stream VS output to memory;
access neighbor vertices in GS

*Diamond buckling (cf. this EG:
“Virtual Garments”), tension wrinkles

*Real-time cracks (cf. Iben, SCA 06)

24 of 25

Thanks for
your attention.

Questions?

25 of 25

