
1
 o

f
2
5

Wrinkling
Coarse Meshes
on the GPU

Jörn Loviscach
Hochschule Bremen
jlovisca@informatik.hs-bremen.de

2
 o

f
2
5

Objective

●Plausible wrinkles and folds
●Fast: on coarse meshes
●Optional control by artist

Demo

3
 o

f
2
5

Related Work

Cloth with less than 100% physics:

●Hadap et al., Vis 99: Bump maps
invoked according to deformation

●Cutler et al., SCA 05: Wrinkle curves
applied according to deformation

●Cordier et al., CGF 05:
Learn mesh details from physics

... any many more

4
 o

f
2
5

Basic Idea

●Per vertex:
●Determine
geometric compression

●Compute plane wave
● Iteratively align adjacent waves

●Per pixel: blend plane waves;
deform normals and tex coords

5
 o

f
2
5

Contributions

●Detailed wrinkles
from arbitrary deformations;
fast, robust, controllable,
no precomputation

●Deformation of normals and texture
from dynamic height fields

●Optional 3D paint-mode
for wrinkle density and direction

6
 o

f
2
5

Outline

●Overview of the method

●Mesh compression and wrinkle height

●Rendering

●Results

●Outlook

7
 o

f
2
5

Overview of the Method

Four
rendering
passes
(= pairs of
vertex and
pixel shaders)

8
 o

f
2
5

Overview of the Method

Apply
deformation,
e.g., skinning.
Store new
positions and
normals.

9
 o

f
2
5

Overview of the Method

Determine
direction and
strength of
local
compression

1
0
 o

f
2
5

Overview of the Method

Align phases
of local plane
waves

1
1
 o

f
2
5

Overview of the Method

Render
to screen

1
2
 o

f
2
5

Determining the Compression

For every vertex:
●Linear approx. M of local deformation
●Find direction and amount of strongest
compression: eigenanalysis of MT M

before deformation after deformation

vertex

neighbor
vertices

1
3
 o

f
2
5

Painting Rest-Pose Wrinkles

Demo

Integrate user-defined wrinkles:

Bias the computation
of the linear approximation M:
M  M·(1–q⊗q),
q specifies direction and amount,
is defined by 3D painting GUI.

1
4
 o

f
2
5

Converting Compression to Height

Simple straight-line approximation:
compression ratio r

  wrinkle amplitude h

Real-time control on width W
Demo

1
5
 o

f
2
5

Compression Vector Field (1)

Result at every vertex:
●Tangent unit vector
along maximum compression

●Wrinkle amplitude

Local plane waves in rest-pose space

1
6
 o

f
2
5

Compression Vector Field (2)

Use M-1 T to convert
the direction vectors
to wave vectors
in post-deformation space.

 Waves are compressed with the mesh.

1
7
 o

f
2
5

Generating the Height Field (1)

Idea:
Blend the linear waves
across every triangle.

Ooops: Waves aren’t aligned.

1
8
 o

f
2
5

Generating the Height Field (2)

Problem: The phases of the local
plane waves are not yet determined.

Solution: Relax the phases gradually
to diminish local misfit.

Demo

1
9
 o

f
2
5

Rendering (1)

Render coarse polygons,
fake fine-scale deformation.

Two issues to address:
●Deform texture
●Adjust normal vector

Demo

2
0
 o

f
2
5

Rendering (2)

Texture deformation
similar to Parallax Mapping

2
1
 o

f
2
5

Rendering (3)

Illumination: Compute normals
of dynamic height field

Need the
gradient of h.

2
2
 o

f
2
5

Rendering (4)

Wrinkle profile determined by:
●height: cosine
●gradient: –sine

Replace each
with a 1D texture lookup:
arbitrary profiles

Demo

2
3
 o

f
2
5

Results

M = #bones used per vertex; N = #neighbors
A: 1 Mpix, 100 verts; B: 55 kPix, 50 kVerts

One
pixel
per
vertex

2
4
 o

f
2
5

Outlook

●Create curvature-aligned hatching
with analytical filtering Demo

●Fewer pseudo-textures with D3D 10:
stream VS output to memory;
access neighbor vertices in GS

●Diamond buckling (cf. this EG:
“Virtual Garments”), tension wrinkles

●Real-time cracks (cf. Iben, SCA 06)

2
5
 o

f
2
5

Thanks for
your attention.

Questions?

