The Environmental Cost of Bitcoin

Jörn Loviscach

Agenda

- Money and the environment
- Computational resources required for Bitcoin
- Impact per Bitcoin and per transaction
- Mining and economic behavior
- Conclusion

Money and the Environment

Isn't that a Crazy Question?

Isn't that a Crazy Question?

CC BY 2.0, Gurney, www.flickr.com/photos/orinoko42/4389542502/

How to Measure Environmental Impact

- kWh for computing
- kWh for networking
- kWh for cooling
- tons of e-waste (also indicates impact of hardware production)
- plus minor factors
- compare to known quantities

Cowry Shells: Sustainable Money

- Ancient Chinese currency 貝
- Used in Africa even today

CC BY 2.0, Richard Parker, www.flickr.com/photos/28722516@N02/3720448600/

Gold Mining: Harm for Humans and Nature

- Developing countries: intolerable working conditions, child labor www.ilo.org/wcmsp5/groups/public/ ---asia/---ro-bangkok/documents/publication/wcms_bk_pb_123_en.pdf
- Open pit mines: deforestation
- Waste rock removal
- Chemicals: cyanides, mercury Baia Mare, Romania, 2000: dam break; estimated 100 tons of cyanides released into rivers http://news.bbc.co.uk/2/hi/science/nature/4083331.stm#romania
- Smeltering: air pollution

Bank Notes: Lifecycle Assessment

- Approx. 4 MJ total energy usage per bank note for a livespan of three years http://www.bankofcanada.ca/banknotes/bank-note-series/polymer/life-cycle-assessment-lca/
- Euro: 14 billions of banknotes http://www.ecb.int/euro/banknotes/circulation/html/index.de.html
- Rough estimate: approx. 5 TWh per year
- For comparison: total use of electric energy in Germany approx. 600 TWh in the year 2010

Electronic Transactions: Just Flipping some Bits?

- Example: 5.3 MW (IT: 3.3 MW) for 66 million accounts http://pamina-business.karlsruhe.de/upload/mediapool/FiduciaBatzler.pdf
- That's a major part of all German accounts www.bankenverband.de/downloads/102009/ta0910-rb-girokonten.pdf
- Compare with 70 GW average consumption of electric power in Germany

High-Speed Trading: Expensive Millisecs

- NYSE Mahwah datacenter: \$70 billion transactions per day http://spectrum.ieee.org/computing/networks/the-microsecond-market/0
 power consumption of 28 MW www.wallstreetandtech.com/data-management/226300061?pgno=1
- Three trans-arctic optic cables to link Japan and the UK, \$300 million to \$1.5 billion each, reducing the latency from 230 to 170 ms

www.extremetech.com/extreme/ 122989-1-5-billion-the-cost-of-cutting-london-toyko-latency-by-60ms

What about Bitcoin?

Try to get some ballpark estimates!

Computational Resources Required for Bitcoin

Contributions to Examine

- Moore's law
- Clients and network: dwindling costs
- Clients and network: only additional use of existing resources; little specific e-waste
- Difficulty is increasing:
 mining remains expensive

Choice of Hardware

	Intel Core i7	Triple AMD Radeon HD 7970	BitForce MiniRig
GHash/s	0.0080.02	2	25
Watts	100150	850	1,250
Hash/kWh	27·10 ¹¹	8·10 ¹²	7.1013
E-Waste	None additional if mining in background	10 kg/a for staying up to date	20 kg/a for staying up to date

https://en.bitcoin.it/wiki/Mining_hardware_comparison http://www.butterflylabs.com/products/

Impact per Bitcoin and per Transaction

Hashes per Block

• Difficulty adapts to performance

data from http://blockexplorer.com/q/nethash

- Difficulty = 1: 2^{224} out of 2^{256}
- September 2012:

- Difficulty = approx. 2,700,000
- Average number of hashes required to solve a block: 1.2.10¹⁶

Energy Content of one Bitcoin

- BTC 50 per solved block, down to BTC 25 this December
- 2.3 or 4.6·10¹⁴ hash/BTC
- 29 or 57 kWh/BTC for GPU (8·10¹² Hash/kWh), up to 10x more for PC, up to 10x less for dedicated hardware
- BTC 1 million on GPUs = 29 or 57 GWh
 = 25 or 50 minutes of electric power
 for Germany

E-Waste for one Bitcoin

- Run a GPU miner 24/7
- 2 GHash/s / 2.3...4.6 \cdot 10¹⁴ Hash/BTC = 4...9 µBTC/s = 140...270 BTC/a
- E-waste: 10 kg/a / 140...270 BTC/a
 = 37...71 g/BTC
- Gross comparison: bank note = 1 g

Transactions per Block

- Transactions per ¹⁵block
 http://blockchain.info/charts/n-transactions-per-block
 September 2012:
 Oct 11 Dec 11 Jan 12 Feb 12 Mar 12 Apr 12 Mar 12 Apr 12 Mar 12
 150...300 transactions/block
- 1.2·10¹⁶ Hash/block
 / 150...300 transactions/block
 = 4...8 ·10¹³ Hash/transaction
- Some room for growth: Typical size of transaction: 300...500 bytes Fee increases steeply after a block size of 250 kB

Energy Consumption for Transactions

- GPU: 4...8·10¹³ Hash/transaction

 / 8·10¹² Hash/kWh = 5...10 kWh/transaction,
 10x more for PC,
 10x less for dedicated hardware
- Germany: 17 billion transactions in 2010 https://www.bankenverband.de/publikationen/ods/die-privaten-banken-fakten-und-zahlen/ die-privaten-banken-fakten-und-zahlen/download which would be 85...170 TWh
- One year of electric power for Germany:
 600 TWh

Mining and Economic Behavior

Similarity to Gold

- Decentralized anonymous proof of work?!
- Costs and price of 1 oz of gold

data adapted from www.virtualmetals.co.uk/pdf/ABNGCQ111.pdf and www.indexmundi.com/commodities/?commodity=gold&months=60

 Naive economics: price > cost: mine! price < cost: don't!

Price and Cost of Bitcoin

- GPU mining: 10...20 ¢/kWh · 29...57 kWh/BTC = 2.9...11.4 US\$/BTC
- Exchange rate (Sep 2012): BTC 1 = US\$ 12
- Similar market effect as with gold?
- Energy content and hence environmental impact remain substantial through economic behavior

Conclusion

Bitcoin = Digital Gold

- We seemingly can't get the benefits:
 - Decentralization
 - Anonymization
- Without the issues:
 - Waste of resources, in particular energy
 - Pollution through energy production and hardware production/disposal

Research Questions

- Can there be a proof-of-work concept that is environmentally friendly?
- Or even meaningful? (Search queries? Folded proteins? Social work?)
- Reduce the number of transactions: Could Bitcoin back another, less costly digital currency?

Questions?

joern.loviscach@fh-bielefeld.de

Mining Pools vs. Individuals

Jörn Loviscach

Why Pool?

- "Solo" mining with a standard PC: 40 years to first solved block
- Pool the workforce, share the reward: smooth flow of income

Measuring the Effort

- Unit of measurement:
 one share
 = a solution for difficulty 1 (typically)
- Frequent proof of smaller work:
 2,700,000 times more likely than solution
- Hard to fake
- Good measure of contributed computational power

Proportional Reward

- Split the reward in proportion to the number of shares in the round
- Encourages pool hopping or switching to solo mining

http://bitcoin.atspace.com/poolcheating.pdf

А	В	С		А	В	С		
0	1/2	1/3		0	1/2	1/3		
1/4	2/5	2/6		1/4	2/5	2/6		
2/7	3/8	3/9		2/7	^{Solo} 1	2/8		
3/10	4/11	4/12		2/9	^{Solo} 1	2/10		
Fraction earned by B								

Pay per Share

- Immediately pay expected reward per share
- Pool hopping not encouraged
- Risk for pool operator: variance
- Higher fee

Further Reward Systems

- Pay per Last N Shares:
 - Split the reward in proportion to the effort in the preceding N shares (possibly including an earlier block)
 - Keeps everybody working, not hopping
 - No risk (like PPS) for pool operator
- Geometric Method: geometrically increasing score for each share
- And many more

https://bitcoil.co.il/pool_analysis.pdf

Further Issues with Pooling

- Fees (some percent)
- Pool can be target of DoS attacks
- Stale shares:
 Block is already solved elsewhere, but nobody told us so far
- Withhold a solution from the pool and submit it solo? Won't work:
 50 BTC payment to pool is part of that block.

Questions?

joern.loviscach@fh-bielefeld.de